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We employ kinetic theory for a binary mixture to study segregation by size and/or mass in a gravita-
tional field. Simple segregation criteria are obtained for spheres and disks that are supported by numerical
simulations.
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Introduction.—Particle segregation in agitated systems
is still not well understood, although it is important in
the manufacturing of pharmaceuticals, powder metallurgy,
coal and mineral processing, solid state chemistry, and
geophysics. The various mechanisms of segregation that
have been proposed are reviewed by Duran et al. [1]. They
include buoyancy and preferential propping, depending on
the nature of the agitation [2], and filtering by boundary
layers in convection cells [3].

Recently, Hong et al. [4] have revisited the problem of
segregation for systems in which the velocity fluctuations
of the grains are nearly Maxwellian. They explore a simple
criterion for segregation that is based on the idea that if
one species of particle does not have sufficient kinetic en-
ergy at the bottom of a mixture to remain mobile, it will
condense and segregate. However, using computer simu-
lations, they discovered that at mass and diameter ratios
at which condensation of the large spheres was predicted,
the small particles could percolate through a condensed
phase of large particles, forcing the large particles above
them. Recognizing this competition between percolation
and condensation, they proposed a relation between the
diameter and the mass ratios of the two species that suc-
cessfully predicted when the condensation would dominate
percolation and the large particles would rise.

Here we also consider a thermalized binary mixture of
grains under gravity and attempt to predict when the larger
grains will rise. To do this, we adopt a simple kinetic
theory for a binary mixture of spheres that differ in size
and/or mass [5].

Preliminaries.—We consider spheres of two species, A
and B. The spheres are assumed to be nearly elastic,
smooth, and homogeneous. Spheres of species i, where
i is either A or B, have radius ri and mass mi . We also
introduce rij � ri 1 rj and mij � mi 1 mj .

To define mean values, we employ the single particle
velocity distribution functions f

�1�
i �c, x, t�, where c is the

particle velocity, x is the position of the particle, and t is
the time. The number density ni of species i is, then,

ni�x, t� �
Z

f
�1�
i �c, x, t� dc ,

where the integration is taken over all c. The total number
density n is
0031-9007�02�88(19)�194301(4)$20.00
n � nA 1 nB .

The mass density ri of species i is defined as mini and
the total mass density r is

r � rA 1 rB � mAnA 1 mBnB .

The mean velocity ui of species i is

ui � �ci� �
Z

cif
�1�
i �c, x, t� dc .

Then, the mass average, or barycentric velocity, u, is de-
fined as the mass average of the species velocities:

u � r21�rAuA 1 rBuB� .

We also define the diffusion velocity, vi , which is of central
importance in this paper, because it indicates whether the
motion of B relative to A is upward or downward:

vi � ui 2 u .

The temperature, Ti, of species i is defined by

Ti � 1
2mi��ci 2 u� ? �ci 2 u�� ,

which is the mean of the kinetic energy of the fluctuations
relative to the barycentric velocity. The mixture tempera-
ture, T , is defined as the number average of the species
temperatures:

T � n21�nATA 1 nBTB� .

Momentum balance.—We ignore contributions to the
species stress that are quadratic in the diffusion velocity
and that are associated with the rate of deformation of
the mixture, and we assume that the only external force
is associated with the gravitational acceleration g. In this
event, the balance of momentum of species i has the form

ri �ui � 2=pi 1 nimig 1 fi , (1)

where the dot indicates a time derivative with respect to
the mean velocity of i, pi is the partial pressure, and fi is
the rate per unit volume at which momentum is provided
to i in interactions with the other species. Because the
interactions are equal and opposite, fB � 2fA.

The partial pressures are given by Jenkins and Mancini
[5] as

pi � niT

µ
1 1

X
j�A,B

Kij

∂
,
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where Kij is defined for spheres �D � 3� and circular disks
�D � 2� in terms of the species volume fraction ni and the
radial distribution function for contacting pairs gij by

Kij �
1
2

njgij

µ
1 1

ri

rj

∂D

.

For spheres, ni � 4pnir
3
i �3 and

gij �
1

1 2 n
1

6rirj

rij

j

�1 2 n�2 1 8

µ
rirj

rij

∂2 j2

�1 2 n�3 ,

where n � nA 1 nB is the mixture volume fraction,
ji � 2pnir

2
i �3, and j � jA 1 jB. Similarly, for circu-

lar disks, ni � pnir
2
i and

gij �
1

1 2 n
1

9
8

rirj

rij

j

�1 2 n�2 ,

where n � nA 1 nB is the mixture area fraction, ji �
pniri , and j � jA 1 jB. Arnarson and Jenkins [6] pro-
vide more refined expressions for the gradients of the par-
tial pressures that are derived in the context of the revised
Enskog theory.

The interaction terms are given by Jenkins and Mancini
[5] as

fi � KijniT

∑µ
mk 2 mi

mik

∂
= lnT 1 = ln

µ
ni

nk

∂

1
4

rik

µ
2mimk

pmikT

∂1�2

�vk 2 vi�
∏

, (2)

for i fi j. Arnarson and Jenkins [6] show that this expres-
sion for the interactions differs from that of the revised
Enskog theory by a term associated with a thermal diffu-
sion coefficient. However, in a dense system, this term is
negligible compared to the term involving =T that appears
in (2). The quantity vk 2 vi is the relative motion of the
two species; here we are interested in the sign of the ver-
tical component of this velocity difference.

When the momentum balances are weighted by the in-
verse of the densities and subtracted, the only inertia terms
that survive are associated with the diffusion velocity, and
we neglect them. Then, the weighted difference is

0 � 2
1

rA
=pA 1

1
rB

=pB 1
1

rA
fA 2

1
rB

fB

or, with fB � 2fA,

0 � 2rB=pA 1 rA=pB 1 rfA . (3)

The segregation criterion.—We employ Eqs. (1) and (3)
to describe the state of a general binary mixture under grav-
ity, ignore the mixture inertia, and attempt to determine in
194301-2
what direction the segregation of species A and B will oc-
cur. After we do this, we consider the special case in which
the large particles are dilute in a dense gas of small par-
ticles. That is, rB . rA and nB�nA ø 1.

We suppose that all gradients are parallel to gravity, in
which case (3) may be written as

0 � 2
rB

r
p 0

A 1
rA

r
p 0

B 1 fA , (4)

where the prime indicates a derivative with respect to the
vertical coordinate. Similarly, upon ignoring the inertia
term in the mixture Eq. (1) becomes

p 0
A � 2rAg 1 fA . (5)

Next, we introduce R, the weighted ratio of the partial
pressures,

R �
pA

pB

nB

nA
. (6)

We note that R is dependent on ni , gij , and ri�rj . Then

p 0
B �

µ
pA

R
nB

nA

∂0

�

µ
nB

nA

∂0pA

R
1

nB

nA

p
0
A

R
2

nB

nA

pA

R

R0

R
,

or, upon employing (5) and (6),

p 0
B � pB

∑
ln

µ
nB

nA

∂∏0

2
mAnBg

R
1

nB

nA

fA

R
2 pB�lnR�0.

(7)

We employ the expressions (5) and (7) for the gradients
of the partial pressures pA and pB in (4) and, after some
simplification, obtain the relation

0 � pB

µ
lnR 2 ln

nB

nA

∂0
1 g

nB

R
�mA 2 RmB�

2

µ
1 1

nB

nA

1
R

∂
fA ,

where

fA � KABnAT

Ωµ
mB 2 mA

mAB

∂
�lnT�0 1

∑
ln

µ
nB

nA

∂∏0

1
4

rAB

µ
2mAmB

pmABT

∂1�2

�yB 2 yA�
æ

.

Finally, we introduce the vertical component of the rela-
tive diffusion velocity wBA � yB 2 yA and suppose that
the temperature is uniform. Then
KAB

Ω
4

rAB

µ
2mAmB

pmABT

∂1�2

wBA 1

∑
ln

µ
nB

nA

∂∏0æ
�

1
nA 1 R21nB

∑
pB�lnR�0 1

nB

R
�mA 2 RmB�g

∏
. (8)
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In Eq. (8), the influence on the initial segregation of the
differences in mass and size has been made explicit.

We note that even in the absence of a temperature gradi-
ent, segregation is possible. Here we explore this further,
by neglecting the inhomogeneities in both the temperature
and the mixture volume fraction. It is possible to show that
�lnR�0 is small in comparison to the term that remains. On
ignoring this term, we obtain a very simple equation re-
lating the relative velocity to the ratio of the mass of each
species and the ratio of partial pressures:

4KABT
rAB

µ
2mAmB

pmABT

∂1�2

wBA �
nB

RnA 1 nB
�mA 2 RmB�g .

(9)

If mA . RmB, then wBA . 0 and species B will rise with
respect to A. On the other hand, if mA , RmB, wBA , 0,
and B will fall with respect to A.

Special case: nB�nA ø 1 for spheres.—As promised,
we consider the case when the larger diameter spheres B
are dilute and smaller diameter spheres A are dense. In
this case, nB�nA ø 1 and several approximations can be
made:

gAA
?

�
1

1 2 n
1

3n

2�1 2 n�2 1
n2

2�1 2 n�3 ,

gAB
?

�
1

1 2 n
1

3n

�h 1 1� �1 2 n�2 1
2n2

�h 1 1�2�1 2 n�3 ,

and

R �
pA

pB

nB

nA

?
�

gAA

gAB

µ
rAA

rAB

∂3

�

µ
2h

1 1 h

∂3

3
�h 1 1�2�2�1 2 n�2 1 3n�1 2 n� 1 n2�

2��1 2 n�2�h 1 1�2 1 3n�12 n� �h 1 1� 1 2n2�
,

where h � rA�rB. We express this condition more simply
by evaluating R at n � 1�2. In this case,

R �
24h3

�h 1 1� �h 1 2� �h 1 3�
.

Then, when m is defined as the ratio of the density of the
material of sphere of B to that of sphere A,

m �
mBr3

A

mAr3
B

�
mB

mA
h3,

the sign of wBA is, by (9), the same as that of

�h 1 1� �h 1 2� �h 1 3� 2 24m .

In Fig. 1 we plot h � rA�rB versus m � h3mB�mA

and indicate on it the curve m � �h 1 1� �h 1 2� �h 1

3��24 (solid line). For the values of m above this curve,
the large spheres rise; for values of m below it, they fall.
Also shown is the criterion m � h of Hong et al. [4] based
on a competition between condensation and percolation
(dashed line). Their numerical simulations provide support
for this criterion and, because the two curves in Fig. 1 are
194301-3
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FIG. 1. Density ratio versus radii ratio for spheres.

relatively close, they also provide support for the present
criterion. The value 1�2 for the mixture volume fraction
was chosen because it is a simple ratio at a representative
dense state. No attempt was made to fit the data of Hong
et al.

Special case: nB�nA ø 1 for disks.—As in the case of
spheres, we make the following approximations:

gAA
?

�
1

1 2 n
1

9
16

n

�1 2 n�2 ,

gAB
?

�
1

1 2 n
1

9
8

n

�h 1 1� �1 2 n�2
,

and

R �
pA

pB

nB

nA

?
�

gAA

gAB

µ
rAA

rAB

∂2

�

µ
2h

h 1 1

∂2 h 1 1
2

16�1 2 n� 1 9n

8�h 1 1� �1 2 n� 1 9n
,

where, again, h � rA�rB.
In this case, with n � 3�4 as a simple ratio at a repre-

sentative dense state,

R �
86h2

�h 1 1� �8h 1 35�
.

Then, upon introducing

m �
mBr2

B

mAr2
A

,

we can write

mA 2 RmB � 0

as

86m � �h 1 1� �8h 1 35� .

Similarly, as in the case of spheres, we plot h versus m for
disks in Fig. 2 and indicate the curve m � �h 1 1� �8h 1

35��86 (solid line). We also give the criterion m � h of
Hong et al. [4] (dashed line) and note the similar shapes of
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FIG. 2. Density ratio versus radii ratio for disks.

the two curves, though the case of spheres gives a closer
result.

Discussion.—Our criteria for segregation are relatively
close to those of Hong et al. [4], even though the pro-
posed mechanisms are very different. The mechanism of
Hong et al. depends upon there being a range of tempera-
ture over which the entire depth of one species is not com-
pletely fluidized in the presence of gravity. Also, Hong
et al. neglect interactions between the two species, while
interactions are crucial to our mechanism. When gradients
are neglected, segregation in the kinetic theory is due to
194301-4
a competition between the inertia of the particles, through
the ratio of their masses, and their geometry, as it enters
through the dense corrections to the partial pressures. Be-
cause there is no relation between this segregation and the
displaced volume of one or the other of the species, we
do not associate this with buoyancy. Finally, we note that
when both species are dilute, such segregation is predicted
for particles that differ in mass, no matter what their radii
may be.

We are grateful to Hans Herrmann and Stefan Lud-
ing for conversations related to particle segregation. This
work was supported by the NASA Microgravity Grants
No. NCC3-797 and No. NAG3-2353.

[1] J. Duran, J. Rajchenbach, and E. Clément, Phys. Rev. Lett.
70, 2431 (1993).

[2] A. Rosato, K. J. Strandburg, F. Prinz, and R. H. Swendsen,
Phys. Rev. Lett. 58, 1038 (1987).

[3] J. B. Knight, E. E. Ehrich, V. Y. Kuperman, J. K. Flint,
H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 54, 5726
(1996).

[4] D. C. Hong, P. V. Quinn, and S. Luding, Phys. Rev. Lett.
86, 3423 (2001).

[5] J. T. Jenkins and F. Mancini, J. Appl. Mech. 109, 27 (1987).
[6] B. O. Arnarson and J. T. Jenkins, in Traffic and Granu-

lar Flow ’99, edited by D. Helbing, H. J. Herrmann,
M. Schreckenberg, and D. E. Wolf (Springer, Berlin,
2000), pp. 481–487.
194301-4


