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Threshold-Related Enhancement of the High-Energy Plateau in Above-Threshold Detachment
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We present nonperturbative theoretical results showing a resonant-like enhancement of above-
threshold detachment spectra in the region of the high-energy plateau as the laser intensity sweeps across
channel thresholds. This enhancement has a pure quantum origin stemming from well-known threshold
phenomena in multichannel problems whose features are clearly demonstrated in our numerical results.
Similar well-known anomalies at neutral atom thresholds are expected to explain experimentally ob-
served resonant-like enhancements of above-threshold ionization spectra.
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A fruitful process for understanding the interaction of
intense laser light with atoms has been above-threshold
ionization (ATI), in which the ionized electron spectrum
exhibits a series of peaks, separated in energy by the pho-
ton frequency, and having nearly equal intensity over large
energy regions (the so-called “plateau” region) [1,2]. ATI
phenomena present a challenge to theory owing to the ne-
cessity of a nonperturbative treatment. Nevertheless many
key features of ATI spectra have been understood experi-
mentally or by using classical, semiclassical, or approxi-
mate quantum mechanical analyses and calculations [1,2].
These include the role of Rydberg resonances in producing
the structure of individual (generally lower energy) ATI
peaks and the role of rescattering of the electron by the
ionic core in determining the extent of the high-energy
plateau. Recently, however, a resonant-like enhancement
of ATI peak intensities in the high-energy plateau has been
discovered experimentally [3,4]. It does not seem to be re-
lated to the Rydberg structure of neutral atoms and is very
sensitive to the laser intensity [3,4]. Nor is it related to
two-electron resonances; indeed, a time-dependent, single
active electron calculation is able to reproduce it, showing
that a 5% change of laser intensity can result in an order
of magnitude change in the relevant ATI peak intensities
[5]. Reference [5] attributes the ATI peak enhancements
to resonant-like constructive interference between rescat-
tered ionized electron wave packets produced in different
laser field cycles. Calculations employing a zero-range po-
tential (ZRP) have demonstrated similar enhancement in
the related above-threshold detachment (ATD) spectrum,
including the great sensitivity to laser intensity and the ne-
cessity of including rescattering effects [6]. Reference [6]
attributes the enhancement to constructive interference of
electron trajectories as the laser intensity varies [6]. Most
recently, the role of channel closings (CCs), i.e., threshold
effects, have been identified as important for describing the
observed enhancement in experiments that used very short
laser pulses of 50 fs [7] and 40 fs [8]. The experiments in
[7] were simulated by ZRP calculations; the resonant-like
behavior of peaks along the high-energy plateau as a func-
tion of laser intensity was interpreted as being due to con-
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structive interference of many active electron trajectories
near multiphoton channel closings [7]. More realistic cal-
culations for Ar were carried out for the experiments in [8],
and the resonant-like behavior was interpreted as being due
to n-photon resonant enhancement of higher channels near
the n-photon channel closing [8]. Despite these works,
the precise nature of this ATI resonant-like effect remains,
as characterized in 1998 by Muller and Kooiman [5],
a “mystery.”

In this Letter we present essentially exact numerical re-
sults for high-order multiphoton detachment from a ZRP
that identify the resonant-like enhancement of high-energy
ATD peaks as stemming from general analytic features of
partial cross sections at the thresholds of particular chan-
nels. Specifically, at the closing of even photon channels
involving l � 0 electrons, analytically known cusp fea-
tures appear in higher photon ATD channels [9]. The sen-
sitive dependence of the channel thresholds to the laser
intensity results in a corresponding sensitivity of ATD peak
intensities. While the effect of threshold anomalies (TAs)
at CCs has been noted for other strong field processes
(e.g., closing of stimulated electron bremsstrahlung chan-
nels on ATD spectra [10], and closing of ATD channels on
high-order harmonic generation spectra [11]), these prior
studies do not address the broad, resonant-like enhance-
ment of the high-energy ATD plateau. Finally, although
we focus on ATD, we discuss also the applicability of
our results to understanding past experimental works for
neutral atoms [3,4,7,8], which we regard as remarkable
experimental demonstrations of the well-known TAs of
general scattering theory [9,12,13] for the case of multi-
photon processes.

Our analysis is based on ab initio results obtained
using a nonperturbative quasistationary quasienergy
state (QQES) theory [14] for detachment of an electron
bound in a three-dimensional ZRP. This theory has been
discussed in detail elsewhere [15,16] and has been used to
describe other intense field processes [17,18]. For the ZRP
model, the key quantities of the QQES approach are the
quasienergy e � E0 1 D 2 iG�2, where D is the Stark
shift of the initial level E0 and G is its decay rate, and
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the Fourier coefficients fs of the periodic QQES wave
function Fe�r, t� for r ! 0 [15]. We assume the electron
interacts with a linearly polarized laser field, F�t� �
Fê cosvt, where F is the laser amplitude, ê is the polar-
ization unit vector, and v is the frequency. The n-photon
detachment amplitude, An, for electron ejection in the
direction n, and the n-photon rate, G�n�, are given by [18]

G�n� � 2
Z

j
p

kn Anj
2 dVn , (1)

An �
X̀

s�2`

�21�sfsJ2s1n

µ
2Fkn

v2 �ê ? n�
∂

. (2)

Here kn is the complex “momentum,” kn �p
e 1 nv 2 Up , and Up � F2��2v2� is the pon-

deromotive shift. (In order to apply our results to any
atomic system, we employ scaled units, in which energies
and h̄v are in units of jE0j and F is in units of F0 �p

2mjE0j3�jejh̄; e.g., for H2, jE0j � 0.754 eV and F0 �
3.36 3 107 V�cm.) The highest closed channel, n0, is
determined by the dynamical threshold condition, n0 �
��jReej 1 Up��v� (where �x� is the largest integer #x),
and hence n0 is sensitive to both the frequency and the in-
tensity. For open channels (n . n0), Rekn . 0, whereas
for a closed channel m �m # n0� , the branch of the
square root for km is defined by the condition Imkm , 0.

Formal scattering theory for multichannel problems
shows that at a particular CC, the partial cross sections
for all open channels exhibit TAs [9,12,13]. These TAs
are caused by interchannel couplings and have a purely
quantum origin; thus, they do not have intuitive or quasi-
classical interpretations. Moreover, TAs may induce either
an increase or decrease of open channel cross sections at a
particular CC. The kinds and magnitudes of TAs depend
on the potential involved. For a short-range potential,
including a ZRP, cusp or step features appear in open
channel partial cross sections at a CC [9]. For a Coulomb
potential, steplike jumps appear [12,13]. To illustrate for
our case of a ZRP, consider the amplitude An�F, v� in
Eq. (2). An�F, v� is nonanalytic at each combination
of F and v such that Em � k2

m � e 1 mv 2 Up � 0,
for m � 1, 2, . . . , n. For the ZRP, these nonanalyticities
are branch points of the kind �Em�l11�2, where l is the
electron’s angular momentum after absorption of m
photons. According to dipole selection rules for the
initial s electron, l takes values allowed by 0 # l # m
and �21�l1m � 1 for the case of linear or elliptical
polarization; for circular polarization, l � m. As a result
of interference between singular and regular parts of An,
the rate G�n� involves singular terms, cn�jEmj�l11�2, with
different coefficients cn below �Imkm , 0� and above
�Rekm . 0� the mth threshold. Obviously, these TAs are
greatest for linear polarization in the vicinity of an even-
m threshold, when the contribution of the s-wave branch
point,

p
Em, in An�F, v� is dominant and the singular

term in G�n� has the form
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DG
�n�
sing ~ cn

q
jEmj . (3)

Since, in addition to DG
�n�
sing, the rate G�n� involves a

positive “regular” part, one can find in this case four
“cusp” or “step” threshold signatures superimposed on
the regular part of the rate, corresponding to the four
possible combinations of the signs of cn above and below
threshold [9]. These general statements may be verified
from our exact ZRP results for G�n� in Eqs. (1) and (2).
The Bessel functions J2s1n in (2) are nonanalytic only
at jEnj � jk2

nj ! 0. The nonanalyticities at Em � 0 for
m � 1, . . . , �n 2 1� are hidden in the coefficients fs.
The existence of these nonanalyticities is obvious from
the explicit expressions for matrix elements which enter
the equations satisfied by fs [15]: these matrix elements
may be expressed as absolutely convergent series expan-
sions in terms having the branch point factors �Ep�p 011�2

for various integers p and p 0.
TAs in the ATD rates G�n� vanish in the Keldysh [19] ap-

proximation: coefficients fs for this case reduce to Bessel
functions Js�2Up��2v��, which are analytic in F and v.
This is not surprising, since neglect of the atomic potential
in the intermediate and final states of the escaping electron
is equivalent to disregarding channel couplings in a multi-
channel problem, in which case the TAs obviously disap-
pear. For a ZRP, the channel couplings due to the binding
potential interaction are realized only through (intermedi-
ate) s states of an escaping electron, since the scattering
phases dl�E� in this model are zero for l . 0. In particu-
lar, this explains the absence of any TAs for the case of
circular polarization (because dipole selection rules forbid
any intermediate or final s states). Note also that, for a
short-range potential, TAs are clearly distinct at the clo-
sure of even-m and odd-m ATD channels. Closing of an
even-m channel induces singularities of the first deriva-
tive of G�n� in the energy Em [cf. Eq. (3)], which can usu-
ally be seen in the rates as cusp-type peaks or valleys or
step-type increases or decreases about the CC. However,
odd-m CC’s can induce only singularities of the second
derivative (due to the p-wave component of the electron’s
wave function), which are less visible but still present (see,
e.g., our Figs. 1 and 2 below). This explains the seemingly
mysterious fact that ZRP calculations in [7] can identify
clear enhancements only at the CC’s of even channels,
m � 12 and 14, and not at m � 13. Owing to their ori-
gin in channel couplings, TA signatures must appear in
accurate numerical simulations as well. Thus, we believe
the enhancements observed numerically in Ref. [5] prob-
ably arise from TA effects. Note that this interpretation is
not in conflict with that presented in [5] in terms of the
behavior of the time-dependent wave function. Finally,
the necessity of a quantum interpretation of ATD plateau
enhancements follows also from quasiclassical considera-
tions [6,7]: many electron trajectories contribute near the
CC’s, which means in fact that the quasiclassical approach
is inadequate for this case.
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FIG. 1. n-photon detachment rates G�n��v� for laser amplitude
F � 0.216. Inset: Details of G�3� (on a linear vertical scale) at
the closing of the two-photon channel.

In general, the numerical value of the coefficient cn of
the

p
jEnj term [cf. Eq. (3)] depends upon a complicated

interplay of interference between the real and imaginary
parts of various terms in Eq. (2) for An. The perturbation
theory (PT) limit of the QQES approach allows an analytic
demonstration of this interference. For example, the PT
result for G�3� near the two-photon threshold is [20]:

G�3� � F6�c�0�
3 1 c

�1�2�
3

p
jE2j 1 O �E2�� , (4)

where E2 � 2v 2 jE0j � 2v 2 1, and the factors c
�i�
3

are

c
�0�
3 �

217�2

945
�197 2 98

p
2 � ,

c
�1�2�
3 �

219�2

135

Ω
28 2 19

p
2, E2 , 0

0, E2 . 0 .

Since the PT amplitude A3 is real for E2 # 0 [18], c
�1�2�
3

for E2 . 0 is zero [as it depends on ImA3�E2 � 0�]; thus
G�3� is linear in E2 above the two-photon threshold. How-
ever, the next order PT term for c

�1�2�
3 is nonzero and this
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FIG. 2. G�n��F� for v � 0.155 in the region where the ponderomotive shift closes the n � 8, 9, and 10 channels. Arrows: values
of F at which the corresponding ATD spectra are presented in Fig. 3. The thick arrows indicate the 8, 9, and 10 photon thresholds.
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ensures the expected square root dependence of G�3� on E2

for some small range of positive values [9]. Similar pecu-
liarities appear for other rates G�n� and their magnitudes
and types change as higher order PT terms become impor-
tant or even dominant (i.e., as PT breaks down). Our exact
results for G�n��v� �3 # n # 10� in Fig. 1 demonstrate
the TAs at the closure of the n � 2 and n � 4 channels.
We note that clearly visible features around the two-
photon threshold appear also in numerical calculations of
G�3� for H2 (see, e.g., [21,22]).

In Fig. 2 we plot the rates G�n��F� �8 # n # 55� in the
region of the closures of the n � 8, 9 , and 10 channels.
These data are for intermediate values of the Keldysh pa-
rameter, 0.86 # gK # 1.55, where gK � v�F. For H2,
our scaled v corresponds to the CO2 laser. We observe
TAs which are similar to those shown in Fig. 1 for a fixed
F. However, a striking difference is the large magnitude
of the TAs near the n � 8 and 10 thresholds. Remarkable
also is that all four types of TAs predicted by Baz’ [9]
may be observed. The most remarkable feature of Fig. 2,
however, is the concentration of very large magnitude TAs
only in a range of n corresponding to the high-energy ATD
plateau. We interpret this concentration as resulting from
a sensitive interplay of potential- and laser-induced effects
at gK � 1 that occurs only on the plateau. For low n, one
is in the Keldysh regime in which the laser is treated ex-
actly but the potential only serves to bind the initial state.
In the limit of high n (well beyond the plateau), the po-
tential becomes important, but a PT treatment of the laser
becomes valid. On the ATD plateau a detailed treatment
of the potential is necessary [6] as well as nonperturba-
tive treatment of the laser. In order to obtain TAs in the
open channel rates one requires, first, that the laser inten-
sity is sufficiently high to induce (through Up) the CCs,
and, second, that the potential effects in intermediate and
final states are included in order to describe the couplings
between channels. The plateau region is where the two ef-
fects are comparable and the largest TAs are observed.
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FIG. 3. ATD spectra G�n� (8 # n # 46) for v � 0.155 for
seven values of the laser amplitude (from bottom to top): F �
0.1, 0.1073, 0.12, 0.1375, 0.15, 0.162, and 0.17. These F values
are indicated by arrows in Fig. 2. The dots for G�n� at fixed F
are connected to guide the eye. Bold lines: indicate the F values
that close the thresholds for n � 8 (lower), n � 9 (middle), and
n � 10 (upper). Note the peak enhancements that appear at the
closing of the n � 8 and 10 channels (i.e., 13 # n # 19 for
F � 0.1073 and 26 # n # 35 for F � 0.162).

How the TAs shown in Figs. 1 and 2 (as functions of v
and F) affect the ATD spectrum is demonstrated in Fig. 3
for 7 values of F indicated by arrows in Fig. 2. The sec-
ond curve from the bottom, for the F value corresponding
to the closure of the n � 8 channel, demonstrates clearly
a resonant-like enhancement for 13 # n # 19 compared
with the ATD spectra for higher or lower values of F.
Similarly, the second curve from the top, corresponding
to the closure of the n � 10 channel, demonstrates a simi-
lar enhancement for 26 # n # 35. Similar enhancements
can be observed if one fixes F and varies v across the
same CCs providing the possibility for experimental obser-
vations of the same plateau structures by changing either
the intensity or the frequency (or both).

Just as our essentially exact predictions for enhance-
ments of ATD spectra have been traced to TAs at CCs
that are well known in multichannel problems involving a
short-range potential [9], we expect that a similar explana-
tion applies to the observed enhancements in ATI spectra
[3,4,7,8]. TAs in systems having a long-range Coulomb
field are different: whereas the total cross section is con-
stant across a threshold, the partial rates can exhibit step-
like increases or decreases [12]. These steplike features
are the analogs of the TAs appearing for a short-range po-
tential [9]. The great similarity of the enhancements in our
ATD spectra in Fig. 3 to those observed in the ATI spec-
tra of Ar in Fig. 1 of Ref. [7] imply that these enhance-
ments have a common origin in analytically known TAs
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near CCs. For Ar (having jE0j � 15.76 eV), our scaled
v � 0.155 corresponds to l � 500 nm and our unit of F
is F0 � 3.2 3 109 V�cm.

In conclusion, we have shown both analytically and
numerically that the threshold phenomena typical for
multichannel problems have great importance in laser
detachment of negative ions as thresholds are crossed by
changing either laser frequency or intensity in the nonper-
turbative regime. These TAs offer a clear (and familiar)
explanation of recent simulations that have predicted
resonance-like enhancements of high-order ATI and ATD
peaks, and especially of experimental observations of
such enhancements of ATI spectra for rare gases.
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