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Two-pion correlations in /syy = 130 GeV Au + Au collisions at RHIC have been measured over
a broad range of pair transverse momentum kr by the PHENIX experiment at RHIC. The kr depen-
dent transverse radii are similar to results from heavy-ion collisions at \/syy = 4.1, 4.9, and 17.3 GeV,
whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to
sidewards transverse radii (Roy/Rgige) is consistent with unity and independent of kr.

DOI: 10.1103/PhysRevLett.88.192302

The influence of Bose-Einstein statistics on the correla-
tion of identical charged pions at low relative momentum
was first used to probe the space-time structure of pion
emission in pp annihilations [1] and has subsequently
been applied to relativistic heavy-ion collisions from the
Bevalac to RHIC [2-7] (see [8] for recent reviews) and
to a wide range of systems including e e~ annihilations
[9]. The correlation function is defined as the ratio of the
two-particle probability distribution to the product of the
single-particle distributions. For a static source with no
final state interactions, it is related to the Fourier transform
with respect to q = p; — p2 of the source distribution

p(r), P(p1,p2)/P(P1)P(p2) =1 + [p(q)I* [1]. If the
source is parametrized as a multidimensional Gaussian,
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PACS numbers: 25.75.Dw

the enhancement in the correlation function is a Gaussian,
and the Gaussian widths are each inversely proportional
to the source dimensions in the canonically conjugate
spatial variables. The extracted source dimensions are
commonly referred to as HBT radii, after a similar tech-
nique developed by Hanbury-Brown and Twiss to measure
stellar radii [10]. For dynamic sources, such as rapidly
expanding sources in heavy-ion collisions, the correlation
function measures “lengths of homogeneity,” or the rela-
tive separations of the pions with low relative momentum.
This leads to source radii which depend strongly on k7, the
mean transverse momentum of the pion pair [11-16]. If
the dynamics are correctly modeled, then both the source
geometry and rate of expansion can be deduced by
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measuring the kr dependence of the radii. The exis-
tence of a connection between HBT radii and heavy-ion
source geometry is established by the dependence of
the radii on system size [17], centrality [4,5], and re-
action plane [3]. Interest in Bose-Einstein correlations
in heavy-ion collisions is driven by the expectation that
HBT radii are sensitive to the large and/or long-lived
sources which may accompany a QCD phase transition
[12,18].  Recent calculations predict that the great-
est sensitivity to a long-lived source will come from
measurements of the correlation function at high ky
(=0.3 GeV/c) [19,20].

We present new measurements from the PHENIX
experiment on two-pion correlations in Au + Au col-
lisions at ,/syy = 130 GeV in the region |n| < 0.35,
0.2 < kr < 1.0 GeV/c, significantly extending previous
measurements by STAR [7] up to a mean-kz7 0.63 GeV/c.
The data are compared to theoretical predictions for
RHIC and to HBT radii from lower energy collisions
at the CERN Super Proton Synchrotron and Alternating
Gradient Synchrotron (at BNL). The ky dependence
of the transverse radii is used to extract a geometric
transverse radius.

The PHENIX experiment has been described in detail
elsewhere [21,22]. For this analysis we utilize a subset of
the detectors in PHENIX. We use the hadronic particle
identification capabilities present in the west arm of the
PHENIX spectrometer perpendicular to the beam direc-
tion [22] with polar and azimuthal ranges of |n| < 0.35
and 7 /4, respectively, during its first year of running. In
this analysis, the vertex is determined with a zero degree
calorimeter and a pair of Cerenkov beam-beam counters
(BBC). Pattern recognition and momentum reconstruc-
tion rely on a drift chamber and a pad chamber which
occupy the region between 2.0 and 2.5 m from the beam
axis. The momentum resolution from these detectors is
Sp/p = 0.6% & 3.6%p. Particle velocity is determined
from the differential time measurements of the BBC and
the electromagnetic calorimeter (EMC) [23], with a com-
bined rms resolution of 700 ps, coupled with the path
length determined from pattern recognition. The momen-
tum determination and particle identification method are
similar to [24], except that the time of flight is measured
by the EMC. A pion is defined as being within 1.5 stan-
dard deviations of the pion mass-squared peak but at least
2.5 standard deviations away from the kaon peak. Af-
ter applying interdetector association cuts the background
from misassociated EMC hits is ~10% as determined by
a hit randomization technique. This background does not
significantly distort the extracted radius in the correlation
measurements, although it reduces the measured correla-
tion strength (A1). We did not correct for this background
in our correlation analysis.

A total of 493 K events in the most central 30% of
the cross section survive all off-line cuts. This sample
contains 3.1 million 7" pairs and 3.3 million 7~ pairs
in the analysis, and has a mean centrality of 10%.

192302-3

The pion correlation function is determined from pairs
of identical pions. The normalized probability of de-
tecting two particles with relative momentum q = p; —
p2 and average momentum k = (p; + py)/2 is deter-
mined experimentally by the ratio of pairs from the same
event (A) with those from different events (B): C»(q,K) =
A(q,k)/B(q, k). Pairs of particles within 2 cm of each
other in the drift chamber are eliminated from the analy-
sis in both the real and background samples. Pairs that
share the same EMC cluster are also removed from both
samples. Finally, all pairs in the mixed background sample
are required to be from events with a reconstructed BBC
collision vertex within 1 cm of each other.

We correct for the Coulomb interaction of the pairs in
the correlation function by parametrizing the source as a
Gaussian distribution in the pair center-of-mass frame and
performing an iterative procedure [25] which accounts for
the finite resolution of the detector. This procedure applied
to the distribution of 77 " -7~ pairs is in agreement with the
data, although the statistics in the Run-1 opposite-signed
analysis are not sufficient to independently determine the
required Coulomb correction. Systematic studies of the
Coulomb correction which vary both radius and magnitude
within reasonable constraints produce variations in the fi-
nal radii which never exceed 0.25 fm.

The relative momenta are projected into the variables
Qlong» along the beam direction, goyu, parallel to the trans-

verse momentum of the pairky = %(pTl + pr,), and Gside
perpendicular to gjong and goy [11,18]. These variables are
calculated in the longitudinal comoving system (LCMS),
obtained by a longitudinal boost from the lab frame to
the frame in which the longitudinal pair velocity vanishes.
This frame is commonly used for sources expected to be
invariant under longitudinal boosts [26].

The fully corrected correlation function for 7~ pairs is
shown in the top panels of Fig. 1; the large g region of the
correlation function has been normalized to 1 in the plots.
The data are fit to a Gaussian parametrization of the source
using a MINUIT based log-likelihood method [4].

_ p2 2 _ p2 2
Rside 9side Routqout) ’

ey

where Riong, Ride, and Roy are the conjugate variables to
Glong> Gsides and gour, Tespectively. Errors quoted in the
tables and figures are statistical only. Systematic errors
come mainly from the Coulomb correction and dependence
of the results on the two-track distance cuts. The combined
systematic error for these effects, estimated by varying the
cuts and corrections within reasonable bounds, is 8% for
Riong, and Rgige, and 4% for Roy. The systematic error
from residual correlations in the event-mixed background
[2] is 2%, yielding a total systematic error of ~8% for
Riong and Rgge and ~4.5% for Roy,.

The data set is subdivided into three k7 bins of equiva-
lent statistics in order to study the momentum dependence
of the correlation function. In Fig. 2, the radii for 7~
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FIG. 1. The three dimensional correlation function for 7~
pairs Versus Giong, gside> and goy¢ in both the LCMS frame (top)
and the pair center-of-mass frame (bottom). The data are plot-
ted versus one momentum difference variable while requiring
the other two to be less than 40 MeV/c. The lines correspond
to the fit to the entire distribution.

pairs are shown to agree within statistical and systematic
errors with previous measurements for overlapping kr bins
at this energy for the 12% most central events. For STAR,
the mean pair centrality can be approximated by the geo-
metric mean of 8%, which is slightly more central than the
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FIG. 2. HBT radii for pion pairs as a function of ky
measured at midrapidity for various energies from E895
(swy = 4.1 GeV), E866 (/syv = 4.9 GeV), NA44, WA9R
(/syv = 17.3 GeV), STAR, and PHENIX Collaborations
(/svy = 130 GeV). The bottom plot includes fits to A/ /mr
for each energy region. The data are for 7~ results except for
the NA44 results, which are for 7.

192302-4

mean pair centrality of 10% for the PHENIX data. This
figure also shows k7 dependent radii for midrapidity pions
from central collisions for ,/syy = 17.3 GeV Pb + Pb
[6,27] and for \/syy = 4.9 and 4.1 GeV Au + Au [3,4].
For the transverse radii, R,,; and R4, the variation with
collision energy is generally smaller than the statistical
and systematic errors of the individual data points. There
is no evidence for a change in the low-kr extrapolation of
Rgiqe With increasing ,/syy which would indicate a larger
geometric source at higher energy. Nor is any change
evident in R, relative to Rgge at high k7, indicating a
longer-lived source. This result is surprising given the fac-
tor of ~3 change in the total charged particle multiplicity
per unit rapidity at midrapidity [28]. Only Ry, exhibits
a significant variation with collision energy. To quantify
this difference, we fit the Rj,,, dependence to A/mr
[13,16,29] for the three sets of beam energies. The
results are overlayed with the data in the bottom panel
of Fig. 2 and yield A = 3.32 * 0.03, 3.05 % 0.06, and
2.19 = 0.05 fmGeV'/? for ./syy = 130, 17.3, and
4.9/4.1 GeV, respectively.

Although a finite emission duration contributes to Ry
but not to Rgige, dynamical correlations affect the two radii
differently. A quantitative determination of the source life-
time can be performed only in the context of a dynamical
model. The lower panel of Fig. 3 shows the k7 dependence

1 -
6-—..-.. .'“Q.._ ]
§ 5-_“ ~~~~~~~~~~ A Mhé"- N __
» - T & T —
e L0000 T L 7
- OSTAR &* +

3 5 —
2— ASTAR —
- @®PHENIX &t g
1_ —
- APHENIX 1 -
225 m® .
o 2F gl " =
2 sE mE =
® 1.8 [ ] ooo =
314 W m -
1.2H —
0.8F- 6 —
0.6— —
0_42_ ET_ =200 MeV _z
02 T.=160 MeV —

(] 0:1 012 0j3 014 0:5 0:6 0.7

k; (GeV/c)
FIG. 3. The top panel shows the measured R4 from identical

pions for STAR and PHENIX. The solid line is a fit of Eq. (3)
to the PHENIX data, and the dashed line is the same fit for
Eq. (2). The dot-dashed line is a fit of Eq. (3) to the STAR data.
The bottom panel shows the ratio R,y /Rsige as a function of kr
overlayed with theoretical predictions for a phase transition for
two critical temperatures.
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TABLE 1. The k7 dependencies of the 7% and 7~ radii in the LCMS and PCMS frames. All
momenta are in MeV and all radii are in fm. The errors are statistical only.
kr (MeV) 200—400 400-550 550-1000
(kr) 333 472 633
Riny 6.74 = 0.31 6.42 = 0.46 3.46 + 046
ALcMms 0.423 = 0.037 0.389 = 0.039 0.287 = 0.048
ot Riong 6.01 = 045 4.76 = 0.35 297 £ 0.38
Rgide 4.81 £ 0.30 3.74 = 0.36 2.79 = 0.37
Rout 4.78 = 0.30 3.76 = 0.26 2.59 = 0.46
RECMS 11.35 £ 0.69 12.20 = 1.02 8.60 = 1.13
Riny 6.00 = 0.30 5.96 * 041 4.58 = 0.48
ALcMms 0.431 = 0.079 0.405 = 0.067 0.353 = 0.062
_— Riong 5.69 = 0.76 4.77 £ 049 3.76 £ 041
Riide 4.67 = 0.38 4.13 = 045 322 035
Rout 4.69 £ 0.58 3.75 £ 040 2.81 = 0.34
RECMS 11.27 = 0.72 1242 = 1.18 11.89 = 1.73

out

of the ratio Roy/Rsige for PHENIX and STAR along with
recent calculations for a thermalized source which under-
goes a first order phase transition at critical temperatures
(T.) of 160 and 200 MeV [20]. The rise in Rout/Rsige
which comes predominantly from a hadronic rescattering
phase is not present in the data, and the values of 1.6
(T, = 160 MeV) and 2.2 (T, = 200 MeV) at high k7 are
excluded.

An additional consequence of strong dynamics occurs
for sources in which the transverse expansion is relativis-
tic. In this case, R,y measured in the LCMS frame is
Lorentz contracted by the y of the pion source velocity
along the direction of gqy¢ [30,31]. Current Lorentz in-
variant formulations of the correlation function [14,32] are
insufficient to determine the source velocity due to trans-
verse expansion; however, the pair center-of-mass system
(PCMS) can be used to provide an upper limit on Ry [33].
The correlation function for 77~ pairs in the PCMS frame
is shown in the bottom panels of Fig. 1, and fit results for
RgﬁMS are listed in Table I. As expected, Rgge and Riong
are equal to the corresponding LCMS parameters within
errors.

Two analytic expressions have been used to describe

R4 as a function of my = ﬁk% + m?2 for a transversely
expanding source,

2 Réeom
Rjge(mr) = m 2
J\T
R2
Riqe(mr) = ne 3)

1 .
L+ 07z + %)

Equation (2) is a first order approximation in mir for a
longitudinally boost invariant source with finite tempera-
ture, T', and expansion velocity, 87 = Bsp/ Rgeom, Where
Rgeom is the Gaussian transverse radius [14]. Equa-
tion (3) includes an additional term in the approximation
and the linear transverse expansion velocity is replaced

192302-5

by a transverse rapidity, n7 = nsp /Rgeom [16]. For a
transverse surface rapidity of ny = 0.85 (8 = 0.69) and
T = 125 MeV [34], a fit of Eq. (3) to the PHENIX
Rgde mr dependence yields Rgeom = 8.1 £ 0.3 fm with
a y?/d.of. =9.6/6. To assess systematic errors the
PHENIX data are also fit to Eq. (2), yielding Rgeom =
6.7 + 0.2 fm and y?/d.o.f. = 9.1/6, and the STAR data
are fit to Eq. (3), yielding Rgeom = 9.4 * 0.1 fm with
x?*/d.of. = 21/6. These fits are shown in the top panel
of Fig. 3. All values of Rgeom are significantly larger than
the comparable 1D rms radius for a Au nucleus [35] of
J1/3 X \/3/5 X 6.87 = 3.07 fm.

In conclusion, we have extended the measurement
of two particle correlations for Au + Au collisions at
JSvv = 130 GeV  to (kr) = 0.63 GeV/c using the
PHENIX detector at RHIC. Values of REGMS are used to
constrain the Lorentz effects for a relativistic transverse
expansion. Fitting Rgge(k7) to two analytic expressions
for an expanding source yields a transverse geometric
radius that is much larger than the comparable radius for
Au. We find that Rjong (k7) increases monotonically with
collision energy, yet no energy dependence is discernible
in the k7 dependence of Ry, and R4, and the ratio,
Rout/Rsige, is consistent with unity and independent of
kr. The results for the transverse radii are contrary to
common expectations for a first order phase transition in
Au + Au collisions at these energies, as demonstrated
by the comparison to a typical hydrodynamic model with
hadronic rescattering. Therefore, we conclude that current
concepts regarding the space-time evolution of the pion
source inferred from two-pion correlations in Au + Au
collisions at RHIC will need to be revised.
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