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We show how to design families of operational criteria that distinguish entangled from separable
quantum states. The simplest of these tests corresponds to the well-known Peres-Horodecki positive
partial transpose (PPT) criterion, and the more complicated tests are strictly stronger. The new criteria
are tractable due to powerful computational and theoretical methods for the class of convex optimization
problems known as semidefinite programs. We successfully applied the results to many low-dimensional
states from the literature where the PPT test fails. As a by-product of the criteria, we provide an explicit
construction of the corresponding entanglement witnesses.
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Entanglement is one of the most striking features of
quantum mechanics. Not only is it at the heart of the vio-
lation of Bell inequalities [1], but it has lately been rec-
ognized as a very useful resource in the field of quantum
information. Entanglement can be used to perform several
important tasks such as teleportation, quantum key distri-
bution, and quantum computation [2]. Despite its wide-
spread importance, there is no procedure that can tell us
whether a given state is entangled or not, and considerable
effort has been dedicated to this problem [3,4]. In this
Letter we apply powerful tools of optimization theory for
problems known as semidefinite programs to construct a
hierarchy of tests for entanglement.

A bipartite mixed state r is said to be separable [5] (not
entangled) if it can be written as a convex combination of
pure product states

r �
X

pi jci� �cij ≠ jfi� �fij , (1)

where jci� and jfi� are state vectors on the spaces HA

and HB of subsystems A and B, respectively, and pi . 0,P
i pi � 1. If a state admits such a decomposition, it can

be created by local operations and classical communica-
tion, and hence it cannot be an entangled state.

Several operational criteria have been proposed to
identify entangled states. Typically these are based on
simple properties obeyed by all separable states and are
thus necessary but not sufficient conditions for separabil-
ity (although some sufficient conditions for separability
are known [6]). The most famous of these criteria is
based on the partial transposition and was first introduced
by Peres [7]. It was shown by Horodecki et al. [8]
to be both necessary and sufficient for separability in
H2 ≠ H2 and H2 ≠ H3. If r has matrix elements
rik,jl � �ij ≠ �kjrjj� ≠ jl� then the partial transpose rTA

is defined by r
TA

ik,jl � rjk,il. If a state is separable, then it
must have a positive partial transpose (PPT). To see this,
consider the decomposition (1) for r. Partial transposition
takes jci� �ci j to jc

�
i � �c�

i j, so the result of this operation
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is another valid density matrix and must be positive. Thus
any state for which rTA is not positive semidefinite is
necessarily entangled. This criterion has the advantage of
being very easy to check, but there are PPT states that are
nonetheless entangled as was first demonstrated in [9].

Our separability criteria will also be based on simple
computationally checkable properties of separable states.
Let r̃, defined on HA ≠ HB ≠ HA, be given by

r̃ �
X

pijci� �ci j ≠ jfi� �fij ≠ jci� �cij . (2)

First, r̃ is an extension of r (that is, the partial trace over
the third party C is equal to r, TrC�r̃� � r). Second,
the state is symmetric under interchanging the two copies
of HA. To put this more formally we define the swap
operator P such that Pji� ≠ jk� ≠ j j� � j j� ≠ jk� ≠ ji�.
We have P2 � I, and p � �I 1 P��2 is a projector onto
the symmetric subspace. Since pr̃p � r̃, the extension
r̃ has support only on this subspace. Finally the extension
r̃ is a tripartite separable state. This means that it will
have positive partial transposes with respect to any of the
parties, and in particular we have r̃TA $ 0 and r̃TB $ 0.

We may now formulate an explicit separability criterion
based on the existence of the extension discussed above.
If the state r on HA ≠ HB is separable then there is
an extension r̃ on HA ≠ HB ≠ HA such that pr̃p �
r̃, r̃TA $ 0, and r̃TB $ 0. Note that the symmetry of
the extension means that if r̃TA $ 0 then r̃TC $ 0, so
including this would not make a stronger test. We may
generalize this criterion to an arbitrary number of copies
of both HA and HB. If the state r on HA ≠ HB is
separable then there is an extension r̃ with support only on
the symmetric subspace of H ≠k

A ≠ H
≠l

B such that r̃ has
a positive partial transpose for all partitions of the k 1 l
parties into two groups. Since the extensions are required

to be symmetric, it is only necessary to test the possible
partitions into two groups that are not related by permuting
copies of HA and HB. Including testing for positivity of
the extension itself, there are d�k 1 1� �l 1 1��2e distinct
positivity checks to be satisfied by r̃.
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These results generate a hierarchy of necessary condi-
tions for separability. The first is the usual PPT test for
a bipartite density matrix r. If the test fails, the state is
entangled; if the test is passed, the state could be separable
or entangled. In the latter case we look for an extension r̃

of r to three parties such that pr̃p � r̃ satisfies the PPT
test for all possible partial transposes. If no such extension
exists, then r must be entangled. If such an extension is
possible, the state could be separable or entangled, and we
need to consider an extension to four parties, and so on.

Each test in this sequence is at least as powerful as
the previous one. We can see this by showing that, if
there is a PPT extension r̃n to n parties, then there must
be a PPT extension r̃n21 to n 2 1 parties. Let r̃n21 �
TrX�r̃n�, X being one of the copies of A or B. Then r̃n21
will inherit from r̃n the property of having its support on
the symmetric subspace. Let’s assume that it is not PPT.
Then there is a subset I of the parties such that r̃

TI

n21
has a negative eigenvalue, where TI represents the partial
transpose with respect to all the parties in subset I . Let je�
be the corresponding eigenvector and let �ji�	 be a basis of
the system X over which the partial trace was performed.
Since r̃n is PPT, then �ej �ijr̃TI

n je� ji� $ 0, for all i. Then
X

i

�ej �ijr̃TI

n je� ji� � �ejTrX �r̃TI

n � je� $ 0 . (3)

Since X ” I , we can commute the trace and the par-
tial transpose, and, using r̃n21 � TrX �r̃n�, we have
�ejr̃TI

n21je� $ 0, which contradicts the fact that je� is an
eigenvector of r̃

TI

n21 with negative eigenvalue.
The problem of searching for the extension can be

solved efficiently, since it can be stated as a particular
case of the class of convex optimizations known as
semidefinite programs (SDP) [10]. A SDP corresponds to
the optimization of a linear function, subject to a linear
matrix inequality (LMI). A typical SDP will be

minimize cT x ,

subject to F�x� $ 0 ,
(4)

where c is a given vector, x � �x1, . . . ,xm�, and F�x� �
F0 1

P
i xiFi, for some fixed n-by-n Hermitian matrices
187904-2
Fj. The inequality in the second line of (4) means that the
matrix F�x� is positive semidefinite. The vector x is the
variable over which the minimization is performed. In the
particular instance in which c � 0, there is no function to
minimize and the problem reduces to whether or not it is
possible to find x such that F�x� is positive semidefinite.
This is termed a feasibility problem. The convexity of
SDPs has made it possible to develop sophisticated and
reliable analytical and numerical methods for them [10].

The separability criteria we introduced above may all
be formulated as semidefinite programs. For brevity we
will explicitly consider only the problem of searching for
an extension of r to three parties. We will also relax the
symmetry requirements on the extension r̃, and we will
ask only Pr̃P � r̃. This increases the size of the SDP,
but simplifies the setup. Let �sA

i 	i�1,...,d2
A

and �sB
j 	j�1,...,d2

B

be bases for the space of Hermitian matrices that operate
on HA and HB, respectively, such that they satisfy

Tr�sX
i sX

j � � adij and Tr�sX
i � � di1 , (5)

where X stands for A or B, and a is some constant — the
generators of SU�n� could be used to form such a ba-
sis. We can then expand r in the basis �sA

i ≠ s
B
j 	, and

write r �
P

ij rijs
A
i ≠ s

B
j , with rij � a22 Tr�rs

A
i ≠

s
B
j �. We can write the extension r̃ in a similar way

r̃ �
X

ij

i,k

r̃kji�sA
i ≠ sB

j ≠ sA
k 1 sA

k ≠ sB
j ≠ sA

i 	

1
X

kj

r̃kjksA
k ≠ sB

j ≠ sA
k , (6)

where we have explicitly used the symmetry between the
first and third party. We also need to satisfy TrC�r̃� � r.
Using (5), and the fact that the s

A
i ≠ s

B
j form a basis of

the space of Hermitian matrices on HA ≠ HB, we obtain
r̃ij1 � rij . The remaining components of r̃ will be the
variables in our SDP. The LMIs come from requiring that
the state r̃ and its partial transposes be positive semidefi-
nite. For example, the condition r̃ $ 0 will take the form
F�x� � F0 1

P
i xiFi $ 0 if we define
F0 �
X

j

r1js
A
1 ≠ sB

j ≠ sA
1 1

X

i�2,j�1
rij�sA

i ≠ sB
j ≠ sA

1 1 sA
1 ≠ sB

j ≠ sA
i 	 ,

Fiji � sA
i ≠ sB

j ≠ sA
i , i $ 2 ,

Fijk � �sA
i ≠ sB

j ≠ sA
k 1 sA

k ≠ sB
j ≠ sA

i �, k . i $ 2 .

The coefficients r̃ijk�k fi 1, k $ i� play the role of the variable x. There are m � �d4
Ad2

B 2 d2
Ad2

B��2 components of
x, where dI is the dimension of HI . Each F is a square matrix of dimension n � d2

AdB. Positivity of the partial
transposes TA and TB leads to two more LMIs, r̃TA $ 0 and r̃TB $ 0. The F matrices for these two LMIs are related
to the matrices Fijk by the appropriate partial transposition. We can write these three LMIs as one, if we define the
matrix G � r̃ © r̃TA © r̃TB , so for example, G0 � F0 © F

TA
0 © F

TB
0 (a block-diagonal matrix C � A © B is positive

semidefinite if, and only if, both A and B are positive semidefinite). So the feasibility problem reduces to attempting
to find r̃ijk�k fi 1, k $ i� with G $ 0. In fact, the SDP corresponding to minimizing t subject to tIABA 1 G $ 0
is always feasible and performs better numerically. A positive optimum gives a value of p� such that �1 2 p�r 1

pIAB�dAdB is entangled for all 0 # p , p�. Looking for an extension on H
≠k

A ≠ H
≠l

B is a semidefinite program
187904-2
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with m � �dA1k21
k �2�dB1l21

l �2 2 d2
Ad2

B variables and a
matrix G with d�k 1 1� �l 1 1��2e blocks of dimension at
most �dA1dk�2e21

dk�2e �2�dB1dl�2e21
dl�2e �2.

Numerical SDP solvers are described in detail in [10].
Typically they involve the solution of a series of least
squares problems, each requiring a number of operations
scaling with a problem size as O�m2n2�. For SDPs with
a block structure these break into independent parts, each
with a value of n determined by the block size. The num-
ber of iterations required is known to scale no worse than
O�n1�2�. Thus for any fixed value of �k, l� the computa-
tion involved in checking our criteria scales no worse than
O�d13k�2

A d
13l�2
B � which is polynomial in the system size.

Using the SDP solver SeDuMi [11], we applied the first
criterion �k � 2, l � 1� to several examples of PPT en-
tangled states with dA � 2, dB � 4 or dA � 3, dB � 3.
On a 500 MHz desktop computer a single state could be
tested in under a second for dA � 2, dB � 4 and in about
eight seconds for dA � 3, dB � 3. For the one and two
parameter families of PPT entangled states described in
[3,9,12] we performed a systematic search of the parame-
ter space, in each case testing hundreds or thousands of
different states. We checked 4000 randomly chosen ex-
amples of the seven parameter family of PPT entangled
states in [13]. We also checked the PPT entangled states
constructed from unextendable product bases in [14]. We
did not find any PPT entangled state with an extension of
the required form, thus verifying the entanglement of all
these states. Very close to the separable states the test was
inconclusive due to numerical uncertainties. Uncertainties
and one example are discussed more fully below.

A very useful property of a SDP is the existence of the
dual problem. If a problem can be stated as a SDP like (4),
usually called the primal problem, then the dual problem
corresponds to another SDP that can be written as

maximize 2 Tr�F0Z�

subject to Z $ 0 (7)

Tr�FiZ� � ci ,

where the matrix Z is Hermitian and is the variable over
which the maximization is performed. For any feasible
solutions of the primal and dual problems we have

cT x 1 Tr�F0Z� � Tr�F�x�Z� $ 0 , (8)

where the last inequality follows from the fact that both
F�x� and Z are positive semidefinite. Then, for the par-
ticular case of a feasibility problem �c � 0�, Eq. (8) will
read Tr�F0Z� $ 0. This result can be used to give a certifi-
cate of infeasibility for the primal problem: if there exists Z
such that Z $ 0, Tr�FiZ� � 0, that satisfies Tr�F0Z� ,

0, then the primal problem must be infeasible.
In the context of entanglement, the role of the “certifi-

cate” is played by observables known as entanglement wit-
nesses (EW) [8,15]. An EW for a state r satisfies

Tr�rsepW � $ 0 and Tr�rW� , 0 , (9)
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where rsep is any separable state. If our primal SDP is in-
feasible (which means that the state r must be entangled),
the dual problem provides a certificate of that infeasibility
that can be used to construct an EW for r.

First, we note that, due to the block diagonal structure
of the LMI, we can restrict any feasible dual solution Z to
have the same structure, i.e., Z � Z0 © Z

TA
1 © Z

TB
2 where

the Zi are operators on HA ≠ HB ≠ HA. Second, we
have Tr�G0Z� � Tr�F0�Z0 1 Z1 1 Z2��. We defined F0

as a linear function of r so that F0 � L�r�, where L is
a linear map from HA ≠ HB to HA ≠ HB ≠ HA. We
can now define an operator Z̃ on HA ≠ HB through the
adjoint map L� such that Z̃ � L��Z0 1 Z1 1 Z2� and

Tr�rZ̃� � Tr�L�r� �Z0 1 Z1 1 Z2�� � Tr�G0Z� . (10)

If rsep is any separable state, we know that the primal
problem is feasible (the extension r̃ exists). Then, using
Tr�G0Z� $ 0 and (10), we have Tr�rsepZ̃� $ 0 for any Z̃
obtained from a dual feasible solution. For this particular
problem, if the primal is not feasible (which means r is an
entangled state), a feasible dual solution ZEW that satisfies
Tr�G0ZEW� , 0 always exists. Using (10) we can see that
the corresponding operator Z̃EW satisfies Tr�rZ̃EW� , 0
which together with Tr�rsepZ̃EW� $ 0 means that Z̃EW is
an entanglement witness for r.

In numerical work, if the SDP solver cannot find an
extension r̃ it constructs the matrices Zi. Evaluating
Tr�rZ̃EW� and verifying the three positivity conditions pro-
vide an independent check of the result. Unless this check
is not conclusive — for example, if Tr�rZ̃EW� is not sig-
nificantly different from zero —we are able to definitively
conclude that no r̃ exists.

If W is an EW, then for any product state jxy� we have

E�x, y� � �xyjWjxy� �
X

ijkl

Wijklx
�
i y�

j xkyl $ 0 , (11)

where �xi , yi	 are the components of jx�, j y� in some basis,
and Wijkl are the matrix elements of W in the same basis.
Equation (11) states that the biquadratic Hermitian form
E associated with W must be positive semidefinite (PSD).
It is not hard to show that all of the EWs generated by
Eq. (10) satisfy the relation

�xyxjZ̃EW ≠ Ijxyx� � �xyxj �Z0 1 Z1 1 Z2� jxyx�

� �xyxjZ0jxyx� 1 �x�yxjZ
TA

1 jx�yx�

1 �xy�xjZ
TB
2 jxy�x� . (12)

Since Z0, Z
TA
1 , and Z

TB
2 are positive by construction the

biquadratic Hermitian form E�x, y� �x j x� has a decom-
position as a sum of squared (SOS) magnitudes. This
guarantees that E�x, y� is PSD. It can be shown that our
first separability criterion detects all entangled states that
possess an EW such that E may be written in this form.
The dual program to our initial SDP may be interpreted as
a search for an entanglement witness of this type. Equally,
the Peres-Horodecki criterion detects the entanglement
of those states which possess entanglement witnesses
187904-3
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for which (11) may be written directly as a SOS— the
decomposable entanglement witnesses [16] such that
W � P 1 QTA for some PSD P and Q. In general, if
there is no EW W such that (11) is a SOS, we can search
over W for which (11) is a SOS when multiplied by
�x j x�k21� y jy�l21 for some k, l $ 1. By duality, this
corresponds to our �k, l� separability criterion.

As an example illustrating the methodology, consider
the state described in [3], Section 4.6, given by

ra �
2
7
jc1� �c1j 1

a

7
s1 1

5 2 a

7
Ps1P , (13)
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with 0 # a # 5, jc1� �
1
p

3

P2
i�0 jii�, and s1 �

1
3 �j01� �01j 1 j12� �12j 1 j20� �20j�. Notice that ra is
invariant under the simultaneous change of a ! 5 2 a
and interchange of the parties. The state is separable for
2 # a # 3 and not PPT for a . 4 and a , 1. Numeri-
cally, entanglement witnesses could be constructed for
ra in the range 3 1 e , a # 4 (and 1 # a , 2 2 e)
with e $ 1028. A witness for a . 3 can be extracted
from these by inspection

Z̃EW � 2�j00� �00j 1 j11� �11j 1 j22� �22j� 1 j02�

3 �02j 1 j10� �10j 1 j21� �21j 2 3jc1� �c1j .

This observable is non-negative on separable states:
2�xyjZ̃EWjxy� �x jx� � j2x0x1y�
2 2 x2x0y�

1 2 x1x2y�
0 j

2 1 j2x0x�
0y0 2 2x1x�

0y1 1 x1x�
1y0 2 x2x�

0y2j
2

1 j2x0x�
0y2 2 2x1x�

2y1 1 x2x�
2y2 2 x0x�

2y0j
2 1 j2x0x�

1y0 2 2x2x�
2y1 1 x2x�

1y2 2 x1x�
1y1j

2

1 3jx2x0y�
1 2 x1x2y�

0 j
2 1 3jx1x�

1y0 2 x2x�
0y2j

2 1 3jx2x�
2y2 2 x0x�

2y0j
2 1 3jx2x�

1y2 2 x1x�
1y1j

2

$ 0 .
The expected value on the original state is Tr�Z̃EWra � �
1
7 �3 2 a�, demonstrating entanglement for all a . 3.

The reformulation of our separability tests as a search
for SOS decompositions of the forms E�x, y� provides con-
nections with existing results in real algebra (see [17] for
a discussion of the SDP-based approach in a general set-
ting). By Artin’s positive solution to Hilbert’s 17th prob-
lem, for any real PSD form f�x� there exists a SOS form
h�x�, such that the product f�x�h�x� is SOS [18]. Find-
ing such an h�x� and SOS decomposition proves that f is
PSD. For a fixed SOS form h�x, y�, we may write a SDP
that attempts to find EWs such that h�x, y�E�x, y� is SOS.
In our hierarchy of criteria the form h is restricted to be
�x j x�k21� y jy�l21. While it is conceivable that every PSD
bi-Hermitian form is SOS when multiplied by appropriate
factors of this type, currently we do not have a proof. De-
ciding whether a form is positive is computationally hard
and so this connection to positive forms also promises to
shed light on the computational complexity of the separa-
bility problem.

In this Letter we introduced a hierarchy of separability
tests that are computationally tractable and strictly stronger
than the PPT criterion. Only the second step in this se-
quence of tests was required to detect the entanglement of
a wide class of known PPT entangled states. The method is
based on the application of semidefinite programs. By ex-
ploiting the duality property of these problems, we showed
how to construct entanglement witnesses for states that fail
any separability test in the sequence. Finally, the wide
range of applications of semidefinite programming, along
with the work reported here and in [19], suggests that it
may become a useful tool in quantum information and in
quantum theory in general.
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