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Multiphoton states from parametric down-conversion can be entangled both in polarization and photon
number. Maximal high-dimensional entanglement can be concentrated postselectively from these states
via photon counting. This makes them natural candidates for quantum key distribution, where the pres-
ence of more than one photon per detection interval has up to now been considered undesirable. We
propose a simple multiphoton cryptography protocol for the case of low losses.
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Parametric down-conversion is a convenient way of cre-
ating entangled states of light [1]. So far it has been
explored in two separate regimes. Experiments on the few-
photon level have often relied on polarization entangle-
ment [2], while experiments with macroscopic amounts of
light have observed two-mode squeezing, that is entangle-
ment in photon number [3]. It is however possible to build
sources that combine both kinds of entanglement. The ba-
sic principle has recently been demonstrated [4]. Such a
source can be seen as a pair of phase-coherent two-mode
squeezers. We will show that from this point of view pho-
ton counting can be used as a postselective realization of
entanglement concentration for continuous variable states.
Maximal high-dimensional entanglement can be extracted
in this way from the multiphoton states.

It is natural to consider the application of this entangle-
ment for quantum key distribution. For the original quan-
tum cryptography protocols [5,6] the presence of more
than one photon in a single pulse or detection interval is
a problem for security. Therefore implementations of key
distribution [7] are usually restricted to weak transmission
signals, with a low probability of containing even a single
photon, limiting the achievable bit rate per pulse. The pulse
rate itself is mainly limited by the dead time of the pho-
ton detectors. Here we take a more positive approach to
multiphoton states in cryptography. We ask whether they
can be used to improve the capacity of the secure channel.
We propose a simple protocol which leads to a significant
increase in bit rates for the case of low losses.

We will first describe our proposed postselective re-
alization of entanglement concentration for continuous-
variable states. Entanglement concentration is a procedure
that allows two parties Alice and Bob to extract maximal
entanglement from nonmaximally entangled pure states us-
ing only local operations and classical communication [8].
Consider the (unnormalized) two-mode squeezed state

jc1� �
X̀
l�0

lljl�ah jl�by
, (1)

where l is usually referred to as the squeezing parame-
ter. For later convenience, we have assumed that the pho-
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tons in the spatial mode a (going to Alice) are horizontally
and those in mode b (going to Bob) are vertically polar-
ized. This state represents photon-number entanglement
between modes ah and by , that is, a quantum superposi-
tion of different states for which the number of photons in
mode ah and by are the same. The state is, however, not
maximally entangled since l is always smaller than unity
and therefore the individual terms in the superposition have
different weights.

Based on Ref. [9] we describe a way to concentrate
photon-number entanglement. Suppose that in addition
to (1) Alice and Bob are also given the state jc2� �P`

m�0�2l�mjm�ay
jm�bh , which differs from (1) by the sign

of the squeezing parameter and by the polarization of the
photons in modes a and b. The total state is then given by

jC� � jc1� jc2�

�
X̀
l�0

X̀
m�0

ll1m�21�mjl�ah jm�ay
jm�bh jl�by

. (2)

Defining n � l 1 m, rearranging terms, and using the
short-hand notation ju, y; w, x� for ju�ah

jy�ay
jw�bh

jx�by

yields

jC� �
X̀
n�0

ln

µ nX
m�0

�21�mj�n 2 m�, m; m, �n 2 m��
∂

,

(3)

where we have collected the terms with the same number
of photons n received by Alice and Bob.

Entanglement concentration could now be achieved by
performing a projection measurement onto a specific pho-
ton number. For a given n, this results in a superposition
state of n 1 1 equally weighted terms. It is evident from
(3) that each term satisfies �Ny 2 Nh�a � �Nh 2 Ny�b .
From our subsequent discussion it will become clear that
these perfect correlations in photon number difference
exist not only in the h�y polarization basis, but in any
basis. This is a consequence of the maximal entanglement
in (3), i.e., of the fixed phase relations between the
different j�n 2 m�, m; m, �n 2 m�� terms.

At first glance, the above scheme seems to require a
quantum nondemolition (QND) measurement of the photon
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number on each side in order to project onto a fixed value
of n � �Ny 1 Nh�a � �Ny 1 Nh�b without losing the pos-
sibility of measuring �Ny 2 Nh�a and �Nh 2 Ny�b after-
wards. Ways of realizing such a QND measurement were
discussed in [9], but it is very difficult to implement. On
the other hand, destructive photon counting is feasible.
It is therefore important to realize that for many applica-
tions it is not strictly necessary to perform the n projection
before the �Ny 2 Nh�a and �Nh 2 Ny�b measurements.
They can be performed simultaneously by simply measur-
ing �Ny�a, �Nh�a, �Nh�b , and �Nh�b independently. The
basis of polarization analysis can be varied, permitting the
observation of perfect correlations in more than one basis.
This approach is similar to the postselection strategy that
enabled the demonstration of quantum teleportation [10]
and related single-photon experiments.

Clearly, one should be careful in referring to a post-
selection method as a concentration scheme since no con-
centrated output state is obtained. However, for the purpose
of quantum cryptography the postselection method will
suffice, since it allows us to establish perfect correlations
between Alice’s and Bob’s measurement results.

In quantum key distribution, to prevent eavesdropping it
is essential that perfect correlations are obtained in at least
two complementary bases. If there were perfect correla-
tions only in one basis, the eavesdropper could make her
measurements in this basis, and the process would not be
secure. We now show that, due to our specific choice of
relative phases, the state (3) is symmetric under a joint ro-
tation of polarization bases through equal angles in modes
“a” and “b.” Therefore, the state exhibits the same photon-
number difference correlations in, for example, the linear
polarization basis rotated by 45±. We also show how such
a symmetric state (3) can be generated in a natural way
using type-II parametric down-conversion.

Parametric down-conversion is a process where a pho-
ton from a pump light source can be split into two photons
of lower frequency within a nonlinear optical crystal. One
can experimentally achieve conditions where a good ap-
proximation for the relevant interaction Hamiltonian is

Ĥ � k�ây
h b̂y

y 2 ây
yb̂

y
h � 1 H.c., (4)

where the complex number k is the product of the ampli-
tude of the pump beam and the relevant nonlinear coeffi-
cient of the crystal. This is the familiar Hamiltonian for the
creation of polarization entangled photon pairs [2], which
has been the basis for many experiments in quantum in-
formation. Using the normal ordering theorem of [11] one
can show that this Hamiltonian leads to the production of
entangled photon states of the following form:

jc� � exp�2iĤt�h̄�j0�

�
1

cosh2�t�

X̀
n�0

p
n 1 1 tanhn�t�jcn

2� , (5)

where t �
kt
h̄ is the effective interaction time and
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jcn
2� �

1
p

n 1 1

1
n!

�ây
h b̂y

y 2 ây
y b̂

y
h �nj0�

�
1

p
n 1 1

nX
m�0

�21�mj�n 2 m�, m; m, �n 2 m�� .

(6)

The total state (5) has exactly the form of state (3). The
terms jcn

2�, which correspond to n photons on each side,
are maximally entangled states shared between Alice and
Bob in a Hilbert space of �n 1 1� 3 �n 1 1� dimensions.
Similar states were studied in the context of Bell’s in-
equalities in [12]. They are all invariant under joint iden-
tical polarization transformations by Alice and Bob, since
they are created by the application to the vacuum of pow-
ers of the operator �ây

h b̂y
y 2 ây

y b̂
y
h �, whose form is con-

served under such transformations. These properties make
them generalized singlet states, which motivates our nota-
tion jcn

2�. Whenever Alice has �n 2 m� photons polarized
along a certain direction and m photons polarized along the
orthogonal one, Bob has m and �n 2 m� photons of the re-
spective polarizations. When employed for quantum key
distribution, every pair of values �m, n 2 m� constitutes a
letter in the cryptographical alphabet.

A simple key distribution protocol using the multipho-
ton states proceeds in the following way. From a common
source, entangled multiphoton pulses are sent to Alice and
Bob via modes a and b. Alice and Bob each independently
and randomly choose one of two complementary bases,
h�y and h0�y0, in which to perform their photon number
measurements. Here, the primed basis is rotated by 45±

with respect to the unprimed basis. These measurements
act as a postselective multiphoton entanglement concen-
tration resulting in detected correlations associated with
the states jcn

2�, where n is the number of detected pho-
tons on each side. They communicate their basis choice
via classical means and extract the key from the photon
number difference recorded in those cases where they had
chosen the same basis. Finally, Alice and Bob examine a
randomly chosen part of the key for errors. In the ideal
case any amount of errors indicates the presence of an
eavesdropper.

It is clear that in the absence of losses the achievable
bit rate increases significantly with the number of photons
because the number of distinguishable measurement out-
comes increases. There are n 1 1 different possible mea-
surement results for the state jcn

2�. For protocols based on
the multiphoton states jcn

2�, photon losses introduce errors
because the state after losses no longer has the perfect cor-
relations expected. We will model photon losses by the ac-
tion of beam splitters introduced to each of the four modes
(ah, ay , bh, by). The probabilities for the measurement of
particular photon numbers in each mode can be calculated
using a positive operator valued measure (POVM). The
operator associated with a measurement of “n” photons in
mode ah (behind the beam splitter) is
187902-2
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P̂n � hn
X̀

m�0

�m 1 n�!
m! n!

�1 2 h�mjn 1 m�ah
�n 1 mj .

(7)

Here, h is the transmission coefficient of the beam- splitter,
and corresponds to the overall quantum efficiency of the
system, including lossy lines and imperfect detectors. Each
term in (7) corresponds to a certain number of photons m
that were lost. We assume the same amount of loss in all
four photon modes. Probabilities of specific outcomes are
calculated by taking the expectation value of the associated
POVMs with the down-conversion state, Eq. (5). Thus the
probabilities are functions only of h and t.

The information shared between Alice and Bob can be
quantified by the mutual information [13]:

IAB �

P
i,j p�Ai , Bj� log2 p�Ai, Bj�P

i p�Ai� log2 p�Ai�
P

i p�Bi� log2 p�Bi�
, (8)

which is a function of the joint probabilities for the
Alice and Bob measurement results, denoted by Ai and
Bj , respectively. An outcome labeled Ai corresponds to
a particular pair of a photon-number measurement made
on Alice’s side; it will be of form �n 2 k� photons in
mode ah (ah0), and k photons in mode ay (ay0), where the
basis of polarization analysis depends on her choice.

In quantum cryptography, Alice and Bob have to assume
that all errors that seem to be due to losses could actu-
ally be the consequence of eavesdropping, with the eaves-
dropper Eve simulating the effect of lossy lines. In such
a situation, Eve will have some knowledge about Alice’s
and Bob’s results, quantified by the mutual informations
IAE , IBE . In the presence of an eavesdropper, the number
of secure shared bits that Alice and Bob can distill by pri-
vacy amplification techniques [14] is denoted the “secrecy
capacity” Cs, and is limited by the inequality [15]

Cs $ IAB 2 min�IAE , IBE� . (9)

Determining the achievable secure bit rates in principle
requires an analysis of all possible eavesdropping strategies.
This is a difficult task in the present situation since the sys-
tem under consideration is very complex. In this paper, as
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a first step, we consider a specific key distribution protocol
where Alice and Bob make use of the 4-photon detection
results (each detects 2 photons) in addition to the 2-photon
results (each detects 1 photon). We have compared this
case to the standard protocol which exclusively uses the
2-photon results [7]. As for the eavesdropping strategy,
we suppose that Eve’s technology is so powerful that she
can replace the lossy transmission lines, unknown to Alice
and Bob, by ideal ones. Furthermore, we assume that Eve
controls the source. She is aware that Alice and Bob will
monitor errors, and tailors her interference to reproduce
the error profiles expected. Indeed, there are two types of
errors that Alice and Bob can check.

The first type is the occurrence of photon number de-
tections different from one on each side or two on each
side. These results are produced under normal circum-
stances, despite not being used for key generation. Eve
has no choice but to replicate these signals, labeled below
in Eq. (10) as r̂rest.

The second type of error occurs when Alice and Bob
both measure the same number of photons, but not the ideal
perfect correlations in polarization. Eve sends 2-photon
and 4-photon signals with the expected overall probabili-
ties, P1,1�h, t�,P2,2�h, t�, but does not always send the
singlet states, jc2

1 �, jc2
2 �, which give her no information,

and give Alice and Bob perfect correlations. Instead, a pro-
portion of the time defined by g, Eve sends a product state
with the correct correlations in one basis. She has no way
of knowing the basis, © (h�y) or ≠ (h0�y0) in which the
legitimate users will measure, and is forced to choose ran-
domly. If she guesses correctly, she has full knowledge of
their results. However, when her basis choice differs from
that of Alice and Bob, she introduces correlation errors on
their measurements. The percentage g is constrained to
produce exactly the frequency of natural errors expected
on the 2- and 4-photon signals. Therefore it is also a func-
tion of h and t. The state produced by Eve’s source is

r̂Eve � P1,1r̂1,1 1 P2,2r̂2,2 1 �1 2 P1,1 2 P2,2�r̂rest

(10)

where, for instance,
r̂1,1 � �1 2 g� jc2
1 � �c2

1 j 1
g

4
�j1, 0; 0, 1�≠�1, 0; 0, 1j 1 j0, 1; 1, 0�≠�0, 1; 1, 0j

1 j1, 0; 0, 1�©�1, 0; 0, 1j 1 j0, 1; 1, 0�©�0, 1; 1, 0j� . (11)
The subscripts ©,≠ label the two complementary polariza-
tion bases in which each product state is defined. The state
r̂2,2 is defined analogously. From an explicit description
of the full state as given above one can directly calculate
the joint probabilities for all possible measurement out-
comes, which determine each mutual information and thus
the minimum secrecy capacity.

The results are shown in Fig. 1. One sees that for a com-
paratively low level of losses the minimum secrecy capac-
ity is approximately doubled by using the 4-photon states
in addition. This effect would be increased substantially
by including higher photon numbers.

It should be noted in this context that efficient multipho-
ton detectors [16] and optical fibers with very low losses
[17] are both under development. Currently, losses and
limited detection efficiencies are serious practical restric-
tions. One can see from Fig. 1(b) that for the present proto-
col the advantage of using the higher photon number states
disappears for overall losses that exceed 35%. However,
187902-3



VOLUME 88, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002
(b)

η 
 τ

Cs
(min)

Cs
(min)

η 

0.05

0.1

0.15

0.2

0.25

80% 90% 100%70%

0

0.1
0.2

60%

80%

100%

0.5

1

1.5

2

0.5

1

1.5

2

0

0.1
0.2

(a)

60%

80%

100%

FIG. 1. The minimum achievable secure bit rate C�min�
s Eq. (9)

for the multiphoton protocol is depicted in (a) upper graph, in
the context of the specific eavesdropping attack mentioned in
the text. To contrast, the equivalent measure for the standard
protocol, using 2-photon results only, is shown in (a), lower
graph. Graphs are plotted in terms of the overall transmission
h, and the effective interaction time of the source t; cf. Eq. (5).
One sees that using 4-photon detections in addition leads to a
significant increase in secure bit rates in the region of low losses.
This is shown in more detail in (b) where we have plotted C�min�

s
for both protocols, at their optimal t values: t � 0.78 and t �
0.70 for the multiphoton and standard protocols, respectively.
C�min�

s decreases for higher t values, as can be seen clearly in
(a), because the probabilities for 2-photon and 4-photon results
are reduced as higher photon numbers become more likely.

there is some indication that the multiphoton states may
still be viable candidates for quantum key distribution for
higher losses. The entanglement in the states jc2

n � is quite
robust under photon loss. We will address this topic in
a future publication. The entanglement that remains after
187902-4
some loss could be purified and then used for key distribu-
tion or other quantum communication tasks.

Natural applications for multiphoton entanglement in-
clude all-optical quantum error correction [18] and even
all-optical quantum computation [19]. The use of down-
conversion multiphoton states for these purposes is a topic
for future research.
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