
VOLUME 88, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002

18
Segmented Band Mechanism for Itinerant Ferromagnetism
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We introduce a novel mechanism for itinerant ferromagnetism, which is based on a simple two-band
model, and, by using numerical and analytical methods, we show that the periodic Anderson model
contains this mechanism. We propose that the mechanism, which does not assume an intra-atomic
Hund’s coupling, is present in both the iron group and some f electron compounds.
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Even though itinerant ferromagnetism was the first col-
lective electronic phenomena studied quantum mechani-
cally, the microscopic mechanisms driving this phase are
still unknown [1,2]. In 1928, Heisenberg [3] formulated
his spin model to address this issue, but, as Bloch [4]
pointed out, a model of localized spins cannot explain the
metallic ferromagnetism observed in Fe, Co, and Ni. After
seven decades of intense effort we still do not know what is
the minimal model of itinerant ferromagnetism and, more
importantly, the basic mechanism of ordering.

In 1963, Hubbard [5] and others introduced the Hub-
bard model to explain the ferromagnetic (FM) properties of
the iron group, incorporating the kinetic energy in a single
nondegenerate band with an intra-atomic Coulomb repul-
sion U. With the exception of Nagaoka’s [6] and Lieb’s [7]
theorems, subsequent theoretical approches were not con-
trolled enough to determine whether the Hubbard model
has a FM phase. The central issue is the precise evaluation
of the energy for the paramagnetic (PM) phase. Because it
does not properly incorporate the correlations, mean field
theory overestimates this energy and predicts a large FM
region [1]. In contrast, numerical calculations have nar-
rowed the extent of this phase to a small region around the
Nagaoka point [6].

Going beyond the simple one-band Hubbard model is
advocated, for example, by Vollhardt et al. [1]. They note
that the inclusion of additional density-density interactions,
correlated hoppings, and direct exchange terms favors FM
ordering. A very simple analysis shows that increasing
the density of states D �E� below the Fermi energy EF

and placing EF close to the lower band edge increases the
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FM tendency. One can achieve this by including addi-
tional hopping terms. The effectiveness of a next-nearest-
neighbor hopping t0 was studied numerically by Hlubina
et al. [8] for the Hubbard model on a square lattice. They
found a FM state when the van Hove singularity in D �E�
occurred at EF . However, this phase was not robust against
very small changes in t0.

Years ago, Slater [9] and van Vleck [10] speculated that
band degenerancy is an essential precondition for itiner-
ant ferromagnetism. They suggested that the intra-atomic
Hund coupling in open shells could be transmitted from
one atom to another by the conduction electrons. How-
ever, there are FM metals, such as Ni, where the influ-
ence of the Hund’s coupling is not clear. In Ni, Hund’s
coupling is associated with the 3d8 configuration which
has low probability because the main configurations are
roughly 40% of 3d10 and 60% of 3d9 [10]. The relevant
question for some transition metals is thus whether a model
involving just the two configurations is sufficient, or are
other orbitals and Hund’s exchange necessary to explain
ferromagnetism. Furthermore, there are f electron itiner-
ant ferromagnets, such as CeRh3B2 [11], whose only local
magnetic coupling is Kondo-like, i.e., antiferromagnetic.

The novel mechanism we now introduce emerges from
a two-band model, such as the periodic Anderson model
(PAM). The basic ingredient is an uncorrelated disper-
sive band hybridized with a correlated and a narrow band.
Missing is an explicit intra-atomic Hund’s exchange. We
show that the PAM supports our mechanism by interpret-
ing the results of quantum Monte Carlo (QMC) simulations
with an effective model derived from it.

We will discuss our mechanism in the context of
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where by
rs and ay

rs create an electron with spin s in b
and a orbitals at lattice site r and na

rs � ay
rsars. The tb

and ta hoppings are only to nearest-neighbor sites. When
ta � 0, the Hamiltonian is the standard PAM. For the f
electron compounds, the a and b orbitals play the role of
the f and d orbitals, and ta � 0. For transition metals,
they correspond to the 3d and 4s orbitals. For U � 0, the
resulting Hamiltonian H0 is easily diagonalized:
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In Fig. 1, we illustrate the (one-dimensional) noninter-
acting bands for the case of interest: ea close to EF and
above the bottom of the b band. If jV j ø jtb j, we can
identify two subspaces in each band where the states have
either predominantly b (c subspace) or a (f subspace)
character. The size of the crossover region around the
points where the original unhybridized b and a bands
crossed is proportional to jV�tbj; that is, it is very small.
The creation operators for the Wannier orbitals crs and
frs associated with each subspace are
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where N is the number of sites. The subsets K. and
K, are defined by K. � �k: jukj $ jykj� and K, �
�k: jykj . juk�. In this new basis,
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Because the U term in H involves only the a orbitals, the
matrix elements of H connecting the f and c subspaces

FIG. 1. Illustration of the effective model and the FM mecha-
nism. D is the hybridization gap and da is the interval of energy
where the electrons are polarized.
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are small compared to the characteristic energy scales of
the problem (the matrix elements of H within the sub-
spaces). To see this we express ay

rs as a function of fy
rs

and cy
rs by first inverting Eqs. (2) and (3) to find
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because the f orbitals have predominantly a character,
while the c orbitals have predominantly b character,
ay

rs �
P

r0 Wr2r 0fy
rs. If jV j ø jtbj, then jwrj ø jWrj.

Consequently, the f subspace becomes invariant under the
application of H. In addition, because jW0j ¿ jWrfi0j,
we can establish a hierarchy of terms where the lowest
order one corresponds to a simple on-site repulsion:
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terms, containing three and two W0 factors, are much
smaller and are essentially the same as the intersite interac-
tions which in the past were added to the Hubbard model
to enhance the ferromagnetism [1]. Adding HU
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get the effective Hamiltonian
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The c and f orbitals form uncorrelated and correlated
nonhybridized bands: Heff � Hc 1 Hf . For the f or-
bitals we obtain an effective one-band Hubbard model with
the peculiar double shell-like dispersion relation shown by
the thick lines in Fig. 1.

Particularly for ta � 0, Hf has a very large density of
states in the lower shell of the f band [1] which is located
near ea. From Fig. 1 it is also clear that the electrons first
doubly occupy the uncorrelated c band states which are
below ea. However, when EF gets close to ea, i.e., the
system is in the mixed valence regime, the electrons close
to the Fermi level go into some of the correlated f states.
Then, the interaction term HU

eff, combined with the double
shell band structure of H

f
0 , gives rise to a FM ground state

(GS): The electrons close to EF spread to higher unoccu-
pied k states and polarize, which causes the spatial part of
their wave function to become antisymmetric, eliminating
double occupancy in real space and reducing the Coulomb
repulsion to zero. The cost of polarizing is just an increase
in the kinetic energy proportional to da � h̄yFdk, where
yF is the Fermi velocity and dk is the interval in k space
in which the electrons are polarized.

To determine the stability of this unsaturated FM state,
we compare its energy with that of the PM (nonmagnetic)
state. If we were to build a nonmagnetic state with only
the states of the lower f shell, we would find a restricted
delocalization for each electron because of the exclusion
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of the finite set of band states (k states) in the upper shell.
To avoid the Coulomb repulsion U for double occupying a
given site, the electrons need to occupy all k states. This
means they have to occupy the f states in the upper and
lower shells. This restricted delocalization is a direct con-
sequence of Heisenberg’s uncertainty principle, and the
resulting localization length depends on the wave vectors,
where the original b and a bands crossed, that define the
size (Dk) of each shell. The energy cost for occupying
the f states in the upper shell is proportional to the hy-
bridization gap D. Therefore if U is the dominant energy
scale in the problem and D ¿ da, the FM state lies lower
in energy than the nonmagnetic state. Under these con-
ditions, the effective FM interaction is proportional to the
hybridization gap D.

This mechanism for ferromagnetism on a lattice is an-
alogous to intra-atomic Hund’s mechanism polarizing
electrons in atoms. In atoms, we also have different
degenerate (the equivalent of da is zero) shells separated
by an energy gap. If the valence shell is open, the
electrons polarize to avoid the short range part of the
Coulomb repulsion (again reflecting the Pauli exclusion
principle). The energy of an eventual nonmagnetic state
is proportional either to the magnitude of the Coulomb
repulsion or to the energy gap between different shells.
The interplay between both energies sets the scale of
Hund’s intra-atomic exchange coupling.

The FM mechanism just described applies to any finite
dimension. For a chain of 16 sites we calculated, by the
Lanczos method, the exact GS of Heff for ea � 2tb, infi-
nite Ũ (Ũ ¿ jt

f
r j), and different values of V as a function

of electron concentration n � Ne�4N . We found that the
GS is a nonsaturated ferromagnet between n � 1�4 (one
electron per site in the PAM) and n � 3�8. In the local
momentum regime, QMC [12] and density matrix renor-
malization group [13] calculations report a FM phase in a
very similar range of n, in contrast to the much broader
range found by dynamical mean field theory calculations
[14]. The largest magnetization M is obtained when n is
such that the lower shell of the f band is completely filled
and the upper one is nearly empty, i.e., when EF � ea.

In Fig. 2a we plot the PAM’s energy per site E�N , com-
puted by our QMC method [12], as a function of the to-
tal spin per site S�N for chains of varying length N and
fixed electron density n [15]. Over these chain lengths the
data collapse, with E�S��N showing the minimum EGS�N
at a nonzero value of S�N that represents a very good
estimate of the magnetization M�N for the PAM in the
thermodynamic limit (TL). In Figs. 2b and 2c, we show
DE�N  	EGS 2 E�S � 0�
�N and M�N for one- and
two-dimensional systems as a function of 1�N. In both
cases M�N smoothly varies to nonzero values in the TL.
The nonsmooth variation of DE�N in two dimensions is
a consequence of shell effects still present in a finite sized
system, but is clearly suggestive of its likely extrapolation
to a non-negative value for very large N . In Fig. 2d we plot
our QMC results for 	E�FM� 2 E�0�
�E�0� as a function
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FIG. 2. (a) Energy of the PAM as a function of total spin for
different chain lengths. (b) Scaling of the energy difference
between the FM and the PM GS’s of the PAM in 1D (same
parameters as in (a) and 2D (V � 0.5, ea � 20.3, and U � 4).
(c) Scaling of the GS magnetization, otherwise the same as
(b). (d) Relative energy difference DE�E�0� vs ea for V �
0.5tb , ta � 0 and V � 0.5, U � 4, and n � 0.29 (circles), n �
0.31 (squares). (e) Magnetization as a function of ea for 2D,
otherwise the same as (d).

of ef for an 8 3 8 cluster and two different electron den-
sities. As we increase ea (starting from below the bottom
of the b band), DE decreases and then increases. The
most stable FM state occurs when EF � ea, as expected
from our discussion of the effective model. Increasing ea

even further, DE approaches zero indicating that the spin
of the GS decreases (see Fig. 2e) and the system becomes a
paramagnet.

By changing ea we can evolve the system from the lo-
calized �ea ø EF� to the itinerant case �ea � EF �. From
Figs. 2d and 2e we see that the itinerant and localized FM
phases are apparently continuously connected. With de-
creasing ea, jDEj decreases while the zero temperature
magnetization M increases. The strong reduction of jDEj

is a result of the very small effective magnetic interaction
in the localized limit (JRKKY is order V 4 [16]). Decreas-
ing ea increases the population of the lower f shell. Since
most of the electrons in the lower f shell are polarized when
ea # EF , this leads to an increase of M. These results are
consistent with the observed behavior of M and the Curie
temperature Tc in LaxCe12xRh3B2 as a function of x [17].

Even though we cannot do finite temperature calcula-
tions with our present version of the QMC method, we can
discuss, at least qualitatively, the predictions of our mecha-
nism for finite temperatures. If we move ea above EF , the
number of a electrons decreases together with the mag-
netization M. A new energy scale ea 2 EF emerges. We
propose that this scale is responsible for the finite tempera-
ture peak in the magnetization of Ce�Rh12xRux�3B2 [18]
that suggests an ordered state with high entropy. At T � 0,
187203-3
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M is small because of the reduced number of a electrons.
When the temperature is of the order of ea 2 EF , elec-
trons are promoted from the doubly occupied b states to
the unoccupied a states which have a large entropy (large
density of states). These a electrons polarize because of
the energy considerations discussed above. The source of
the large entropy is thus associated with charge and not
with spin degrees of freedom, which explains why a state
with larger M has a higher entropy. From this analysis we
predict that the entropy below Tc contains a considerable
contribution from the charge degrees of freedom.

We can also connect our mechanism with the hydro-
static pressure dependence of Tc. To do this we calculated
jDEj�N by the QMC method as a function of increasing
tb (Fig. 3a). Here we assume that the main effect of the hy-
drostatic pressure is to increase tb and to leave the other pa-
rameters unchanged. The order of magnitude of jDEj�N ,
which should be proportional to Tc, and its qualitative be-
havior in Fig. 3a are in good agreement with the experi-
mental results in CeRh3B2 [11]. We see from Fig. 3a that,
for the itinerant FM case, jDEj�N is of the order of 100 K.
This scale is much larger than the typical magnitude of
the RKKY interaction [19] (�1 K for CeRh3B2) which is
commonly used to explain the origin of the magnetic phase
when the a electrons are localized. We also find that the
FM state appears close to quarter filling and disappears for
n close to 3�8.

We used a nonzero ta to study the stability of the FM
phase when da is varied. This study is also important
because, in contrast to f electron compounds, in the FM
transition metals both bands are dispersive. In Fig. 3b
we see that the FM phase is even more stable for ta �
20.1tb than for ta � 0 and becomes unstable for ta �
0.05tb . The reason for this asymmetric behavior is easy
to understand in terms of the variation of da: If ta is
negative, then the effect of ta on the dispersion of the f

band is opposite to that of the hybridization V . When ta �
20.1tb we get, for the given ea and V , the minimum value
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states as a function of tb . (b) Influence of the hopping ta on the
FM state. The lattice size is in unit cells.
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for da and therefore the most stable FM case. When we
depart from this value of ta, da increases, jDEj decreases,
and the FM state becomes less stable.

In summary, we introduced a novel mechanism for itin-
erant ferromagnetism which is present in a simple two-
band model. The picture just presented, combined with our
previous results [16], allows a reconciliation of the local-
ized and delocalized ferromagnetism pictures painted by
Heisenberg [3] and Bloch [4]. The hybridization between
bands plays a crucial role. We have also considered the
case relevant for the iron group, where the dispersion of the
lower band is not negligible. The fact that the ferromag-
netism is even more stable for finite values of ta indicates
that our mechanism is relevant to explain the ferromagnet-
ism of the transition metals, such as Ni, where a correlated
and narrow 3d band is hybridized with the 4s band. It sug-
gests that the ferromagnetism in the transition metals can
originate, at least in part, in the interplay between the cor-
relations and the particular band structure, and not solely
in the intra-atomic Hund’s exchange [10]. In addition,
our results explain several qualitative features observed in
the ferromagnet CeRh3B2 [11,17,18]. Elsewhere we will
discuss the relation of our mechanism to Re�Co12xSix �2

(Re � Ho, Er) and the uranium monochalcogenides (US,
USe, and UTe) which are ferromagnets [20].
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