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We calculate transport properties of disordered 2D d-wave superconductors from solutions of the
Bogoliubov–de Gennes equations, and show that weak localization effects give rise to a finite-frequency
peak in the optical conductivity similar to that observed in experiments on disordered cuprates. At
low energies, order parameter inhomogeneities induce linear and quadratic temperature dependencies in
microwave and thermal conductivities respectively, and appear to drive the system towards a quasiparticle
insulating phase.
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Introduction.—The study of disorder in high-Tc super-
conductors (HTSC) remains an engaging topic for at least
two reasons: first, it is apparent that significant disorder —
perhaps originating with charge-donor impurities—is
present in nearly all HTSC samples and, second, the con-
trolled doping of substitutional impurities is a powerful
means of studying the electronic state. Transport experi-
ments on the cuprates at low T have given us information
on the quasiparticle lifetime in the disordered superconduc-
tor and indicated the existence of a strong, near-unitarity-
limit scattering potentials associated with impurities in
the CuO2 plane. The simplest BCS-quasiparticle theories
have been successful at describing qualitative features of
transport experiments, but fail to explain many of the de-
tails. This is the principal motivation for the current work
addressing transport properties of dirty d-wave supercon-
ductors. The approach taken here is to model the paired
state as an inhomogeneous superfluid via the Bogoliubov–
de Gennes (BdG) equations. We focus most of our
attention on optimally doped superconductors at low
temperatures, where inelastic processes freeze out [1] and
mean-field theory is most applicable.

It is well known that HTSC are strongly affected by dis-
order because of the d-wave symmetry of the pair order pa-
rameter Dij (i and j are site indices of the paired electrons).
In a pure sample, the density of states (DOS) r�v� is gap-
less and vanishes as jvj at the Fermi energy (taken to be 0
here). A single strong-scattering impurity produces a pair
of subgap resonances at 6v0 (v0 , Dmax, where Dmax is
the DOS peak associated with the gap edge in tunneling
experiments). When a finite concentration ni of impuri-
ties with impurity potential U is present, the isolated reso-
nances are split, and they broaden into an “impurity band”
centered at the Fermi energy. The energy scale g of the
impurity band, below which r�E� crosses over from linear
(jEj . g) to constant (jEj , g), is determined by ni and
U. These essential features are captured in the widely used
self-consistent T-matrix approximation (SCTMA) for im-
purity scattering [2]. The SCTMA is a perturbative scheme
which is useful for treating pointlike scatterers. It correctly
incorporates the physics associated with strong-scattering
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potentials, but ignores correlation effects between impuri-
ties (i.e., localization effects), as well as the local response
of the superfluid to the impurities. In the SCTMA, g is
also the quasiparticle scattering rate in the impurity band.

While the SCTMA-based notion of an impurity band
appears to be fairly consistent with the observed ther-
modynamic properties of the optimally doped cuprates
[3], the simplest theory based on this picture disagrees
with transport experiments. Notably, the low-temperature
behavior of both the thermal and microwave conductivities
in several systems disagree with the simple prediction,
s, k�T � T2 [4]. For example, the low-temperature
microwave conductivity in YBa2Cu3O72d appears to vary
roughly linearly with temperature, s � T [5]. In addition,
the optical conductivity of disordered cuprates is observed
to have a maximum at a disorder-dependent frequency of
order 100 cm21 [6]; this feature is also not found in the
simple SCTMA analysis [7]. Finally, the SCTMA predicts
the universality of residual transport coefficients, i.e., lim-
iting values of k�T and s as T ! 0 which depend only
weakly on disorder [8]. While this has been confirmed
in thermal conductivity measurements on YBa2Cu3O72d

[9] and Bi2Sr2CaCu2O8 [10], there are other systems
where universality is not seen [11]. We show below that
some of these discrepancies can be understood within a
BCS framework by going beyond the SCTMA.

Approach.—The BdG equations will be solved at two
levels of approximation. Like the SCTMA, non-self-
consistent (NSC) solutions assume that Dij is homoge-
neous, but, unlike the SCTMA, NSC solutions incorporate
quantum coherence (i.e., localization) effects associated
with scattering from multiple impurities exactly. Self-
consistent (SC) BdG solutions involve a further step in
which the nonlinear response of Dij to the local disorder
potential is determined. In both cases, the BdG equations
are solved on a tight-binding lattice with N � 1600 sites
and up to 50 disorder configurations. In matrix form, the
mean-field Hamiltonian is

H �
X
ij

F
y
i

"
tij Dij

D
y
ij 2t�

ij

#
Fj , (1)
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with F
y
i � �cy

i", ci#�. The subscripts i and j refer to site in-
dices, and tij � 2td�i,j� 1 �Ui 2 m�di,j, with d�i,j� � 1
for nearest neighbor sites and 0 otherwise. All ener-
gies in this work are measured in units of t, and the
lattice constant is a � 1. The bond order parameter is
Dij � 2V �cj#ci"� with V the nearest neighbor pairing in-
teraction. The pure d-wave superconducting state occurs in
the disorder-free limit and is related to the bond order pa-
rameters by Dij �

1
2 D0��21�xij 2 �21�yij � with �xij ,yij�

connecting sites i and j, and where D0 is the homoge-
neous d-wave amplitude. Spatial fluctuations arise natu-
rally when one solves Dij self-consistently in the presence
of a disorder potential. For this work V � 3.28, making
D0 � 0.8 which is a factor of �4 larger than the realis-
tic case. The eigenstates are found using standard linear
algebra routines to diagonalize Eq. (1). The quasiparticle
DOS is r�v� � N21�

P
n d�v 2 En��, where En are the

eigenenergies for a given impurity configuration and �· · ·�
represents configuration averaging.

The complex conductivity is

s�v, T� �

*
e2h̄

ivpN

X
n,n0

jĝ0
nn0 j2

f�En� 2 f�En0 �
h̄v1 2 En 1 En0

+
,

(2)

where ĝa
nm 	 �nj �px �m� ≠ ta jm� is the matrix element

of the velocity between eigenstates n and m, ta (a �
0, . . . , 3) is the Pauli matrix in particle-hole space, and
v1 � v 1 i01. We use a binning procedure to evaluate
the real part of s�v, T �. Note that expression (2) is
not manifestly gauge invariant, but we do not expect
this to be a problem since the collective response of the
one-component charged order parameter occurs at the
plasma frequency.

For numerical reasons, we are restricted to evaluating
s�v, T� in the “gapless regime,” g * T , which has been
studied in intentionally damaged samples of YBa2Cu3-
O72d [6,12]. In this regime, the SCTMA predicts [4] that
the real part of the conductivity is sSCTMA �v ! 0, T� �
s00 1 a�T�g�2 and sSCTMA�v, 0� � s00 1 a0�v�g�2,
with a universal value for the residual conductivity:
s00 � e2yF��p2h̄yD�. In this expression, yF is the Fermi
velocity and yD � j=kDk j is the quasiparticle velocity
component parallel to the Fermi surface. Both impurity
vertex corrections and Fermi-liquid corrections renormal-
ize s00 in an approximation [13], where s-wave scattering
is generalized to include anisotropic components, but
where weak localization corrections and order parameter
inhomogeneities are neglected. In this scheme the thermal
conductivity is not renormalized [13], k�T��T � k00 1

a�T�g�2 , with universal value k00 �
1
3 k2

B�y2
F 1 y

2
D��

yFyD which survives this class of perturbative corrections.
Results.—Typical results for r�v� near unitarity —

defined by v0 ø g and corresponding to U 
 10 and
U 
 5 in the NSC and SC calculations, respectively —
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are shown in Fig. 1. NSC calculations agree semi-
quantitatively with SCTMA calculations except below
an exponentially small energy [14]. The SC result, by
contrast, shows a large disorder-induced suppression of
the DOS relative to the SCTMA plateau. As discussed
elsewhere [14] the “disorder-induced pseudogap” (DIP)
at the Fermi energy appears to be a generic feature of
SC BdG solutions and has an energy scale related to v0
but which grows with increasing ni. We stress that, for
typical planar Cu substituents in HTSC, this is an energy
scale which is comparable to those explored in transport
experiments.

Figure 1 shows the basic low-T result for the con-
ductivity with strong-scattering impurities. sSCTMA�v�
is approximately Drude-like for v . g, but saturates
at the universal value [7,8] s00 for v , g. Numerical
solutions of the BdG equations deviate significantly from
this with s�v , g� linear in frequency, and rising to
a peak at v 
 g. This is true for both sSC and sNSC
(the SC and NSC BdG conductivities, respectively), and
is therefore the result of weak localization corrections
to the SCTMA result [15]. Indeed, Fig. 1(c) shows that
ds�v� 	 sNSC�v� 2 sSCTMA�v� satisfies a scaling
relation, ds�v��s00 � F�v�g�, which is similar to the
weak localization scaling relation for dirty 2D metals.
In contrast, sSC�v� does not display a simple scaling
relation, as we discuss below. At this point, we simply
remark that sSC�v� always has less finite v spectral
weight than sSCTMA�v� for the same value of U [as
illustrated in Fig. 1(a)], with the lost weight appearing in
the superfluid response [16].
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FIG. 1. Finite frequency conductivity for m � 1.2, T � 0,
and D � 0.8 (i.e., yF�yD � 2.5). (a) Curves are for self-
consistently determined order parameter (SC BdG), homoge-
neous order parameter (NSC BdG) and SCTMA with ni � 0.04.
(b) Density of states for NSC BdG and SCTMA with U � 10,
and SC BdG with U � 5 (unitarity limit). The gap edge for the
tunneling density of states is Dmax 
 1; the SCTMA impurity
bandwidth is g 
 0.45. (c) Scaling of the NSC BdG conduc-
tivity for U � 10 and ni � 0.02, 0.04, 0.06, 0.08, and 0.14.
Corresponding g are g � 0.29, 0.43, 0.55, 0.67, and 0.91. A
small deviation arises for ni � 0.02 from finite size effects.
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The finite-frequency conductivity peak exhibited in
Fig. 1 is reminiscent of conductivity measurements in dis-
ordered HTSC [6]. Experimentally, the peak is also seen
in the normal state T . Tc, generally at higher energies,
whereas in our approximation it occurs at significantly
lower energies, and is much less pronounced than in the
superconducting state. It is clear that inelastic scattering is
important in the normal state and needs to be incorporated
in a complete explanation of the finite-frequency peak.
Nevertheless, this is the simplest way of understanding
this feature of the optical data, which has not been
reproduced in any other approach to our knowledge.

The temperature dependence of the low-frequency con-
ductivity is also of experimental interest. In Fig. 2 we
have plotted s�v1, T�, where v1 � 0.0297 is the low-
est nonzero frequency, which is chosen since v � 0 suf-
fers from finite size effects. The strong T dependence of
sNSC�v1, T� is similar to the SCTMA result. On the other
hand, sSC�v1, T � has a linear-T conductivity, reminiscent
of most microwave conductivity experiments [5]. These
results are generic for a wide range of U near unitarity.
Figure 2 also shows the thermal conductivity

k�T� �
1

2p h̄T

Z
dx x2

µ
2

≠f

≠x

∂
�ST �x�� , (3)

where

ST �x� �
2p2h̄2

N

X
n,n0

j�ŷg�nn0 j2d�x 2 En�d�En 2 En0� ,

(4)

where quasiparticle group velocity ŷg � ĝ3 1 ŷ
x
D ≠ t1,

and �ŷx
D�ij � �i�h̄� �xi 2 xj �Dij in the site representation

[17]. For a finite system, the d functions in Eq. (4) are
broadened to smooth the discreteness of the energy spec-
trum. It is apparent in Fig. 2 that the Wiedemann-Franz
law k�sT � L0 	 k2

Bp2�3e2, which is already violated
because of differences between the group and Fermi ve-
locity, appears to also be violated at low T (at least in the
NSC case) by weak localization corrections. For compari-

FIG. 2. T -dependent conductivity, normalized to s00 for
(a) NSC BdG and (b) SC BdG with ni � 0.06, U � 10,
m � 1.2, and D � 0.8. v1 � 0.0297 is the lowest nonzero
frequency used in calculating s with Eq. (2); k��TL0� and
s�T � are evaluated using Eqs. (4) and (5).
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son, we show a similar calculation of the charge conduc-
tivity which becomes exact in the limit v ø T ,

s�T� �
e2

2p h̄

Z
dx

µ
2

≠f�x�
≠x

∂
�Ss�x�� , (5)

where Ss is identical to ST with the replacement of ŷg

by ĝ0. From the figure, it is clear that Eq. (5) is in good
agreement with s�v1, T�, and that both k�T ��T and s�T�
exhibit a linear T dependence over a wide range of tem-
peratures. The extent of the linear regime is discussed
below. Linear power laws have been claimed in ther-
mal conductivity measurements [10] (but other power laws
have also been reported), and this work provides a potential
mechanism. Conductivities with odd power laws in T are
difficult to achieve in the SCTMA because all quantities
in the gapless regime are analytic functions of v. We note
that quasilinear behavior over some intermediate tempera-
ture regime has been obtained in SCTMA approaches, by
invoking a special combination of unitarity and weak scat-
terers [18], by fine-tuning scattering phase shifts [19], or
by including order parameter fluctuations in a SCTMA-like
approximation [20].

Finally, in Fig. 3 we study the dependence of sSC�v�
on impurity concentration. As ni is increased, the peak
position in sSC increases, in qualitative agreement with
the scaling of sNSC�v�. The scaling of sSC�v� is not
straightforward, however, since low-frequency spectral
weight is depleted as ni increases, in contrast to sNSC�v�
which depends only weakly on ni at low v. The deple-
tion is correlated with the growth of the DIP [shown in
Fig. 3(b)], reminiscent of disordered interacting met-
als near the metal-insulator transition. For the model
interaction chosen, we never observe a transition to a
truly gapped state, and it is doubtful that a quasiparticle
metal-insulator transition could be observed in real HTSC
since superconductivity is destroyed in heavily damaged
samples. However, the current work is strongly suggestive

FIG. 3. Scaling of sSC�v� with ni at T � 0. (a) sSC�v� for
a range of ni between 0.02 and 0.14, U � 5. (b) Density of
states at ni � 0.04 (open circles) and ni � 0.14 (filled circles).
(c) Thermal conductivity vs temperature for the same ni , U .
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that the physics of disordered cuprate superconductors is
influenced by proximity to such a transition.

In Fig. 3(c), we plot the SC thermal conductivity for
several impurity concentrations to illustrate the robustness
of the (quasi-)linear-T regime. The regime is bounded
by two disorder-dependent temperature scales; the upper
crossover temperature is readily apparent up to ni � 0.08,
and is correlated with the weak localization scale g, while
the lower bound signals a downturn in k�T which appears
to scale with the DIP. For ni � 0.14, there is no clear
distinction between these scales. With current system sizes
it is difficult to determine the lowest energy behavior. If
one assumes that matrix elements of �ŷg� have only weak
energy dependence near the Fermi surface, then we expect
ST �x� � r�x�2 which is �x2a near x � 0 (r � xa[14])
in the SC BdG calculations. For sufficiently small T , then,
one anticipates a downturn with k�T � T 2a below the
DIP energy scale. It is clear that a strong suppression
relative to the universal SCTMA result k�T � ! k00 is to
be expected.

Conclusions.—We have observed effects with two
distinct physical origins in this work. First, there is a
pronounced peak in s�v� at v 
 g arising from lo-
calization physics. This occurs whether or not the BdG
equations are solved self-consistently and is consistent
with the experimental fact that the peak is observed only
in very disordered systems. Since g �

p
ni for strong

scatterers, our work suggests that a systematic study
of samples with varying impurity concentrations will
provide an experimental means to distinguish between the
weak localization mechanism presented here and other
proposed origins for the peak. Second, we have found
that important physics associated with the correlated order
parameter response to disorder arises at low energies.
Perhaps the most striking result is the observation of
linear-T power laws in the charge and thermal conductiv-
ities, as observed in some high-Tc systems. In addition,
order parameter supression effects appear to eliminate the
residual conductivities at asymptotically low temperatures
expected on the basis of SCTMA and other treatments.
We note that the current work assumes fairly disordered
systems, and the extrapolation to the clean limit (g , T )
is not obvious. On the other hand, this is the first time
that this additional source of off-diagonal scattering has
been correctly accounted for in a transport theory, and
there appears to be no reason, in principle, why these
effects should also not be important in clean 2D systems
and possibly even in higher dimensions. To compare
directly with experiments, the effect of realistic Dirac
cone anisotropies and inelastic scattering needs to be
better understood. Work along these lines is in progress.
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