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Electron Spin Decoherence in Quantum Dots due to Interaction with Nuclei

Alexander V. Khaetskii,1 Daniel Loss,1 and Leonid Glazman2

1Department of Physics and Astronomy, University of Basel,
Klingelbergstrasse 82, CH-4056 Basel, Switzerland

2Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455
(Received 17 January 2002; published 19 April 2002)

We study the decoherence of a single electron spin in an isolated quantum dot induced by hyperfine
interaction with nuclei. The decay is caused by the spatial variation of the electron wave function within
the dot, leading to a nonuniform hyperfine coupling A. We evaluate the spin correlation function and
find that the decay is not exponential but rather power (inverse logarithm) lawlike. For polarized nuclei
we find an exact solution and show that the precession amplitude and the decay behavior can be tuned
by the magnetic field. The decay time is given by h̄N�A, where N is the number of nuclei inside the
dot, and the amplitude of precession decays to a finite value. We show that there is a striking difference
between the decoherence time for a single dot and the dephasing time for an ensemble of dots.
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The spin dynamics of electrons in semiconducting
nanostructures has become of central interest in recent
years [1]. The controlled manipulation of spin, and in
particular of its phase, is the primary prerequisite needed
for novel applications in conventional computer hardware
as well as in quantum information processing. It is
thus desirable to understand the mechanisms which limit
the spin phase coherence of electrons, in particular in
GaAs semiconductors, which have been shown to exhibit
unusually long spin decoherence times T2 exceeding
100 ns [2]. Since in GaAs each nucleus carries spin, the
hyperfine interaction between electron and nuclear spins
is unavoidable, and it is therefore important to understand
its effect on the electron spin dynamics [3]. This is
particularly so for electrons which are confined to a closed
system such as a quantum dot with a spin 1�2 ground
state, since, besides fundamental interest, these systems
are promising candidates for scalable spin qubits [4]. For
recent work on spin relaxation (characterized by T1 times)
in GaAs nanostructures we refer to Refs. [5–7].

Motivated by this we investigate in the following the
spin dynamics of a single electron confined to a quantum
dot in the presence of nuclear spins. We treat the case of
unpolarized nuclei perturbatively, while for the fully po-
larized case we present an exact solution for the spin dy-
namics and show that the decay is nonexponential and can
be strongly influenced by external magnetic fields. We use
the term “decoherence” to describe the case with a single
dot, and the term “dephasing” for an ensemble of dots [8].
The typical fluctuating nuclear magnetic field seen by the
electron spin via the hyperfine interaction is of the order
of [9] �A�

p
N gmB, with an associated electron preces-

sion frequency vN � A�
p

N , where A is a hyperfine con-
stant, g the electron g factor, and mB the Bohr magneton.
For a typical dot size the electron wave function covers
approximately N � 105 nuclei, then this field is of the
order of 100 G in a GaAs quantum dot. The nuclei in
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turn interact with each other via dipolar interaction, which
does not conserve the total nuclear spin and thus leads to
a change of a given nuclear spin configuration within the
time Tn2 � 1024 s, which is just the period of precession
of a nuclear spin in the local magnetic field generated by
its neighbors.

We note that there are two different regimes of interest,
depending on the parameter vN tc, where tc is the corre-
lation time of the nuclear field. The simplest case is given
by the perturbative regime vN tc ø 1, characterized by
dynamical narrowing: different random nuclear configu-
rations change quickly in time and, as a result, the spin
dynamics is diffusive with a dephasing time �1�v

2
Ntc.

A more difficult situation arises when vNtc ¿ 1, requir-
ing a nonperturbative approach. It is this regime which
we will consider in this paper, i.e., the electron is local-
ized in a quantum dot, and the correlation time is due to
the internal nuclear spin dynamics, i.e., tc � Tn2, giving
vN tc � 104. Next, we need to address the important is-
sue of averaging over different nuclear spin configurations
in a single dot. Without internal nuclear spin dynamics,
i.e., Tn2 ! `, no averaging is indicated. However, each
flip-flop process (due to hyperfine interaction) creates a
different nuclear configuration, and because of the spatial
variation of the hyperfine coupling constants inside the dot,
this leads to a different value of the nuclear field seen by
the electron spin and thus to its decoherence. Below we
will find that this decoherence is nonexponential, but still
we can indicate a characteristic time given by �A�h̄N �21

[8]. Moreover, we shall find that Tn2 ¿ �A�h̄N �21, and
thus still no averaging over the nuclear configurations is
indicated (and dipolar interactions will be neglected hence-
forth). To underline the importance of this point, we will
contrast below the unaveraged correlator with its average.

Unpolarized nuclei.—We consider a single electron
confined to a quantum dot whose spin S couples to an
external magnetic field B and to nuclear spins �Ii� via
© 2002 The American Physical Society 186802-1
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hyperfine contact interaction, described by the Hamiltonian

Ĥ � gmBS ? B 1 S ? hN , hN �
X

i

AiIi, (1)

where hN ��gmB� is the nuclear field. The coupling con-
stant with the ith nucleus, Ai � Ay0jC�ri�j2, contains the
electron envelope wave function C�ri� at the nuclear site
ri , and y0 is the volume of the crystal cell. We start with
the case B � 0, and for simplicity we consider nuclear
spin 1�2. Neglecting dipolar interactions between the nu-
clei, we can consider only some particular nuclear configu-
ration, described in the Î i

z eigenbasis as j�Ii
z�	, with Ii

z �
61�2. Moreover, we assume an unpolarized configuration
with a typical net nuclear magnetic field A��

p
N gmB�, be-

ing much less than A��gmB� (fully polarized case). We
study now the decay of the electron spin from its initial
(t � 0) Ŝz eigenstate j*	. For this we evaluate the correla-
tor Cn�t� � 
njdŜz�t�Ŝzjn	, where dŜz �t� � Ŝz�t� 2 Ŝz ,
and Ŝz �t� � exp�itĤ �Ŝz exp�2itĤ �. This correlator is
proportional to 
njŜz�t� 2 Ŝz �0� jn	. Since at t � 0 the
total (electron and nuclear) state jn	 � j*, �Ii

z�	 is an eigen-
state of Ĥ0 � ŜzĥNz (with eigenergy en), we can expand
in the perturbation V̂ � �1�2� �Ŝ1ĥN2 1 Ŝ2ĥN1� (with
Ĥ � Ĥ0 1 V̂ ). Going over to the interaction picture,
we obtain in leading order

Cn�t� �
X
k

jVnk j
2

v
2
nk

�cos�vnkt� 2 1� , (2)

where Vnk � 
njV̂ jk	 is the matrix element between initial
state n �*, �. . . , Ik

z � 21�2, . . .� and intermediate state
k �+, �. . . , Ik

z � 11�2, . . .�, and vnk � en 2 ek. Using
jVnkj

2 � A2
k
nj1�2 2 Îk

z jn	�4, and vnk � �hz�n 1 Ak�2,
where �hz�n � 
njĥNzjn	, we obtain for the typical nuclear
configuration, for which �hz�2

n � v
2
N ¿ A2

k ,

Cn�t� � g�I0 2 I1�t� cos��hz�nt� 1 I2�t� sin��hz �nt�� ,

Ii�t� �
Z 1`

2`

dz x4
0 �z�Fi�tx2

0 �z��, i � 0, 1, 2 ,
(3)

where g � 2A2��8pN�hz�2
n�, F0 � 1�2, F1�h� �

sinh�h 1 �cosh 2 1��h2, and F2�h� � sinh�h2 2

cosh�h. Here, N � aza2�y0 ¿ 1 is the number of
nuclei inside the dot, and t � At�2pN . We have re-
placed the sums over k (which run over the entire space)
by integrals and used that jC�r, z�j2 � �1�pa2az� 3

exp�2r2�a2�x2
0 �z�. Here a, az are the dot sizes in the

lateral and transverse (perpendicular to the 2D plane) di-
rections, respectively, and the transverse wave function is
normalized, i.e.,

R1`

2` dz x
2
0 �z� � 1. For any analytic func-

tion with expansion x
2
0 �z� � x

2
0 �0� 2 z2�x2

0 �00�2 near
its maximum, we have I1,2�t ¿ 1� � 6�x2

0 �0��t3�2� 3p
p��x2

0 �00 �sin�tx
2
0 �0�� 7 cos�tx

2
0 �0���. Thus, Cn�t� 2

Cn�`� ~ 1�t3�2, i.e., the spin decay follows a power law
for times t ¿ 1, i.e., t ¿ �A�N �21. Note that for the
typical nuclear configuration the quantity A2�N�hz�2

n is
of order unity, thus the part of the electron spin state
which decays is of the order of the initial value. Hence
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the same holds for the spin part which survives at t ¿ 1.
For the fully polarized nuclear state the result (3) should
be multiplied by 2, and �hz�n should be replaced by
A�2. Moreover, in the presence of a large Zeeman field,
ez � gmBBz ¿ vN , we should substitute ez for �hz�n.
Thus, the asymptotic behavior of Cn�t� is not changed,
the only difference being that the decaying part of the
initial spin state is small now, being of the order of
�vN�ez�2 ø 1.

We note that Cn�t� in (2) is quasiperiodic in t, and,
thus, it will decay only up to the Poincaré recurrence time
tP. This time can be found from the condition that the
terms omitted when converting sums to integrals become
comparable with the integral itself. This will happen at
t � N , giving tP � 0.1 1 s.

In next order, V̂ 4, we face the problem of “resonances,”
i.e., the corrections will contain zero denominators. This
gives rise to linearly growing terms ~vNt, even for t ø

�A�N�21. In higher order the degree of the divergence will
increase. This means that the decay law we found can,
in principle, change after proper resummation, because no
small expansion parameter exists, which, strictly speak-
ing, would justify a perturbative approach. Still, the result
found in lowest order remains qualitatively correct in that
it shows that a nonuniform hyperfine coupling leads to a
nonexponential decay of the spin. This conclusion is con-
firmed by an exactly solvable case to which we turn next.

Polarized nuclei: exactly solvable case.— In this sec-
tion we consider the exactly solvable case where the initial
nuclear spin configuration is fully polarized. We also al-
low for a magnetic field but neglect its effect on the nuclear
spins. With the initial wave function C0 � j+; ", ", ", . . .	
we can construct the exact wave function of the system for
t . 0,

C�t� � a�t�C0 1
X
k

bk�t� j*; ", ", # k , ", . . .	 , (4)

with normalization ja�t�j2 1
P

k jbk�t�j2 � 1, and we as-
sume that a�t � 01� � 1, a�t , 0� � 0. Then, inserting
C�t� into the Schrödinger equation we obtain

i
da�t�

dt
� 2

1
4

Aa�t� 1
X
k

Ak

2
bk�t� 2

eza�t�
2

,

i
dbl�t�

dt
�

µ
A
4

2
Al

2

∂
bl�t� 1

Al

2
a�t� 1

ezbl �t�
2

,

(5)

where A �
P

k Ak. Laplace transforming (5), we obtain

a�t� �
1

2pi

Z
G

dvi exp��v 2 iA0�4�t�

iv 1 ez 1 pNiv
R

dz ln�1 2
iAx2

0 �z�
2pNv �

,

(6)

where A0 � A 1 2ez . We have replaced the sumP
k

A2
k

iv2A0�41Ak�2 over the xy plane by an integral and
calculated it using jC�rk�j2 given above. As usual, the
integration contour G in Eq. (6) is the vertical line in the
complex v plane so that all singularities of the integrand
lie to its left. These singularities are the following: two
186802-2
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branch points [v � 0, v0 � iAx
2
0 �0��2pN ], and first

order poles which lie on the imaginary axis (v � iy).
For ez . 0 there is one pole, while for ez , 0 there are
186802-3
two poles, and for ez � 0 there is one first order pole at
v1 � iA�2 1 iA

R
dz x

4
0 �z��4pN . For the contribution

from the branch cut between v � 0 and v � v0 we
obtain
ã�t� �
e2iA0t�4

pN

Z 1

0
dk 2z0keit 0k

Ω∑
k

Z
dz ln

Ç
1 2

x
2
0 �z�

x
2
0 �0�k

Ç
1k�pN 2 2ez�Ax2

0 �0�
∏2

1 �2pz0�2k2
æ21

, (7)
where t0 � tx
2
0 �0�, and z0 � z0�k� is defined through

x
2
0 �z0� � x

2
0 �0�k. Let us consider first the case ez � 0.

The asymptotic behavior of the integral (7) for t ¿ 1 is
determined by k ø 1. For example, for x

2
0 �z��x

2
0 �0� �

exp�2z2� we find ã ~ 1� ln3�2t. Thus, the decay of ja�t�j
starts at t . 1, i.e., at t . A21N , as in the unpolarized
case. Note that the magnitude of ã is of order 1�N , thus
the decaying part of the initial spin state has this smallness
as well, in contrast to the unpolarized case above where
this part is of order unity [10]. For large Zeeman field
(jezj ¿ A) and for t ¿ 1, the main contribution in (7) is
given for k ! 1. Expanding x

2
0 �z� for small z (see above),

we obtain z2
0 � 2x

2
0 �0� �1 2 k���x2

0 �00. Then from Eq. (7)
we have for jez j ¿ A

ã�t ¿ 1� �
2eit 02iA0t�4

4
p

p N

x
2
0 �0�p

�x2
0 �00

A2

e2
z

�1 1 i�
t3�2 . (8)

From this we find then that the correlator C0�t� �
2
C0jdŜz �t�Ŝz jC0	 � �1 2 ja�t�j2��2 agrees with the
perturbative result (3) for the fully polarized state, i.e.,
C0�t� 2 C0�`� ~ 1�t3�2. (Note that the asymptotic be-
havior of the correlator is given by the term which is the
cross product of the pole contribution and the one [Eq. (8)]
from the branch cut.) This agreement is to be expected,
since for large Zeeman field, the perturbative treatment
with a small parameter A�jezj ø 1 is meaningful [11].
However, at zero Zeeman field, when the system cannot be
treated perturbatively, we find C0�t� 2 C0�`� ~ 1� ln3�2t,
and the agreement with (3) breaks down. Nevertheless,
the characteristic time scale for the onset of the nonex-
ponential decay is the same for all cases and given by
�A�N�21. We have also checked that 
Ŝx�t� 2 Ŝx�0�	
has the same behavior as 
Ŝz�t� 2 Ŝz�0�	 with the same
characteristic time 2N�A.

There are several interesting features which we can ob-
serve for the fully polarized state. In an external Zeeman
field, the effective gap seen by the electron spin is A0�2 �
A�2 1 ez. Thus, when ez is made negative this gap de-
creases and even vanishes at jez j � A�2. From Eq. (6)
we find that the two poles are symmetric in this case,
and the system resonates between the two frequencies
v6 � 6iA���

R
x

4
0 �z� dz���1�2�

p
8pN. Note that the resid-

ual gap is of order A�
p

N (and not A�N, as one might
naively expect). Near this Zeeman field we have ja�t�j2 �
cos2�v1t� (up to small corrections of order 1�N), and, as
a result, jaj2 averaged over time is 1�2, i.e., the up and
down states of the electron spin are strongly coupled via
the nuclei. In contrast, outside this resonance regime the
value of jaj2 is close to 1 (again with small 1�N correc-
tions), i.e., 
Ŝz�t�	 � 1�2 2 jaj2 is close to 21�2 at any
time. The width of the resonance is �A�

p
N , i.e., small

compared to the initial gap A�2. We note that this be-
havior represents periodic (Rabi) oscillations with a single
well-defined frequency and is not related to decoherence.
[The latter is described by the branch cut contribution
ã which remains small (order 1�N) even near the reso-
nance.] This abrupt change in the amplitude of oscilla-
tions of 
Ŝz�t�	 (when changing ez in a narrow interval
around A�2) can be used for an experimental detection
of the fully polarized state. Note that the weight of the
upper pole alone (i.e., that which exists at ez � 0) also
drops abruptly from a value close to 1 to a value much
smaller than 1 in the same narrow interval, which can be
experimentally checked by Fourier analysis. Another spe-
cial value of Zeeman field corresponds to the case when
the upper pole is close to v0 (k � 1)— the upper edge
of the branch cut. This occurs [see Eq. (6)] at the criti-
cal value e�

z � bA�2 , 0, where b � x
2
0 �0�

R
dz lnj1 2

x
2
0 �z��x

2
0 �0�j , 21 is a nonuniversal number which de-

pends on the dot shape. Since at finite Zeeman field
the asymptotics in t is determined by k’s close to 1, we
see from Eq. (7) that for e � e�

z the asymptotics changes
abruptly. Indeed, for ��ez 2 e�

z ��A�2 ø 1, we find ã ~

1�
p

t, for 1 ø t ø ��ez 2 e�
z ��A�22, and ã ~ 1�t3�2,

for t ¿ ��ez 2 e�
z ��A�22. Thus, when approaching the

critical Zeeman field e�
z there is a slow down of the asymp-

totics from 1�t3�2 to 1�t1�2. It is interesting that this slow
down is related to a strong modulation of the density of
states (DOS) of the excitations within the continuum band
(branch cut) near its edge when ez ! e�

z . In the sub-
space of none or one nuclear spin flipped [see Eq. (4)], the
DOS becomes n�u� � Im�G0�u� 1 d�du lnD�u��, where
u � iv, G0�u� �

P
k 1��u 1 Ak�2� is the “unperturbed

Green’s function,” and D�u� is the denominator of a�v�;
see Eq. (6). One can then show that for ez ! e�

z (i.e.,
the upper pole approaches the continuum edge), the DOS
develops a square root singularity: n�u� ~ 1�

p
v0 2 u.

Simultaneously, the weight of the upper pole vanishes
linearly in ez as e�

z 2 ez ! 0.
Finally, the nuclear state is characterized by bk�t�,

which allows for similar evaluation as a. Here we just note
that its branch cut part, b̃k�t�, is nonmonotonic in time,
particularly pronounced at ez ! e�

z : First b̃k�t� grows
like

p
t, until t reaches �1��1 2 ak� ¿ 1, and then

it decays like 1��
p

t �1 2 ak��, with ak � Ak�A0 ! 1.
Thus, bk is maximal for Ak close to A0, i.e., the nuclei
near the dot center are affected most by the hyperfine
interaction with the electron spin.
186802-3



VOLUME 88, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002
Averaging over nuclear configurations.—We have
seen that the decay of Cn�t� occurs in the time interval
N�A ø t ø N2�A, with N�A � 1026 s in GaAs dots.
On the other hand, the electron spin precesses in the net
nuclear field [see Eq. (3)] with the characteristic period
�hz�21

n � v
21
N � 1028 1029 s. Thus, v

21
N ø N�A, and

we see that the electron spin undergoes many precessions
in a given nuclear field before decoherence sets in due
to the nonuniform hyperfine couplings Ak . This behavior
changes dramatically when we average over nuclear
configurations [8]. For that purpose we consider high tem-
peratures, kBT ¿ h̄vN , and average Cn�t� in Eq. (2) over
all nuclear configurations, i.e., C�t� �

P
n Cn�t��

P
n. We

then find

C�t� �
X
k

2A2
k

8

Z t

0
dt1

Z t

0
dt2

Y
ifik

cos

∑
Ai

2
�t1 2 t2�

∏
.

(9)

For t ø 1, we get
Q

ifik cos�Ait�2� � exp�2NC�At�
2pN�2�, where C � p

R
dz x

4
0 �z��4. Thus, the averaged

spin correlator C�t� (9) is of order 2
RvNt

0 dx F�x�, with
F being the error function. Thus, C�t� grows without
bound as vNt for vNt ¿ 1 (the condition t ø 1 can
still be satisfied). Consequently, the perturbative approach
breaks down even in leading order in V̂ (we recall that
without averaging the divergences occur in all higher but
not in lowest order). To treat this case properly, we need a
nonperturbative approach. For that purpose we calculate
now the correlator C�t� exactly by treating the nuclear
field purely classically, i.e., as a c number. Then we obtain

Cn�t� � 2
h2

N�

4h2
N

�1 2 coshNt� , (10)

where hN �
p

h2
Nz 1 h2

N� is the nuclear field, with
h2

N� � h2
Nx 1 h2

Ny . The value of hN corresponds to a
given nuclear configuration n. To make contact with the
perturbation procedure which we used before in the quan-
tum case we go to the regime h2

N� ø h2
Nz, where hN can

be replaced by hNz in Eq. (10). Then we average the result-
ing expression �h2

N��h2
Nz� �1 2 coshNzt� over a Gaussian

distribution for hN , i.e., over P�hN � ~ exp�23h2
N�2v

2
N �.

The result becomes proportional to
R1`

0 dz exp�2z2�2� 3

�1 2 cos�gz���z2 ~
Rg

0 dx F�x�, where g � vNt�
p

3.
Thus, we see that we obtain exactly the same functional
form as before from Eq. (9) with the same divergencies
in t. This reassures us that the treatment of the nuclear
field as a classical field is not essential. On the other
hand, the same Gaussian averaging procedure can now be
applied to the nonperturbative form Eq. (10). Defining
Ccl�t� �

R
dhN P�hN �Cn�t�, we obtain

Ccl�t� � 2
1
6

∑
1 1

µ
v

2
Nt2

3
2 1

∂
e2v

2
N t2�6

∏
. (11)
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Thus we get rapid (Gaussian) decay of the correlator for
t ¿ v

21
N , giving the dephasing time v

21
N �

p
N�A. This

means that 
Ŝz�t�Sz	 saturates at 1�3 of its initial value of
1�4. Finally, it seems likely that for the case of nuclear
quantum spins a nonperturbative treatment of the averaged
correlator C�t� will lead to a similar rapid time decay as
found for the classical case in Eq. (11).

In conclusion, we have studied the spin decoherence of
an electron confined to a single quantum dot in the pres-
ence of hyperfine interaction with nuclear spins. The de-
coherence is due to a nonuniform coupling of the electron
spin to nuclei located at different sites. The decoherence
time is given by h̄N�A and is of the order of several ms. It
is shown that in a weak external Zeeman field the pertur-
bative treatment of the electron spin decoherence is impos-
sible. Moreover, the decay of the electron spin correlator
in time does not have an exponential character, instead it is
given by a power or inverse logarithm law. We have shown
that there is a strong difference between the decoherence
time for a single dot, h̄N�A, and the dephasing time for an
ensemble of dots, h̄

p
N�A.

We acknowledge support from the NCCR Nanoscience,
Swiss NSF, DARPA, and ARO. Part of this work was
performed at the Aspen Center of Physics and at the ITP,
UC Santa Barbara. L. G. acknowledges support from NSF
Grant No. DMR-9731756.

[1] S. A. Wolf et al., Science 294, 1488 (2001).
[2] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80,

4313 (1998).
[3] G. Salis et al., Phys. Rev. Lett. 86, 2677 (2001); G. Salis

et al., Phys. Rev. B 64, 195304 (2001).
[4] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[5] A. V. Khaetskii and Yu. V. Nazarov, Phys. Rev. B 61, 12 639

(2000); 64, 125316 (2001).
[6] S. I. Erlingsson, Yu. V. Nazarov, and V. I. Fal’ko, Phys.

Rev. B 64, 195306 (2001).
[7] Y. B. Lyanda-Geller, I. L. Aleiner, and B. L. Altshuler,

cond-mat/0112013.
[8] We note that in cases with exponential decay the spin

decoherence (dephasing) time is usually denoted by T2

(T�
2 ) (e.g., in the Bloch equations). E.g., in Ref. [2] it is T�

2

which is measured (due to an ensemble average over many
spins). In general, T�

2 , T2. Since the spin decay found
in the present work turns out to be nonexponential, we will
not use this notation (i.e., T2 or T �

2 ) to avoid confusion.
[9] M. I. Dyakonov and V. I. Perel, in Optical Orientation

(North-Holland, Amsterdam, 1984), p. 11.
[10] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B

59, 2070 (1999).
[11] The same is true for any model with a small expansion

parameter. E.g., for a system with anisotropy, where
the hyperfine constants in perpendicular and transverse
directions are different, i.e., Az

i � Azy0jC�ri�j2 fi A�
i �

A�y0jC�ri�j2, one obtains again a change in the asymp-
totics from 1� ln3�2t (zero anisotropy) to 1�t3�2 (large
anisotropy). The anisotropy plays the role of ez .
186802-4


