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Elastic Interaction of Surface Steps: Effect of Atomic-Scale Roughness

R.V. Kukta,!* A. Peralta,! and D. Kouris?

' Department of Mechanical Engineering, State University of New York, Stony Brook, New York 11794

2Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming 82071
(Received 18 September 2001; published 18 April 2002)

Elastic interactions of atomic steps can greatly impact surface morphology. Recent atomistic cal-
culations and experimental observations find the standard dipole model of steps is valid only for very
large step separations. In this Letter, a new model is presented that displays remarkable agreement with
atomistic predictions for step separations larger than just a few step heights. It is shown that the interac-
tion energy of steps exhibits a novel intermediate-ranged behavior and that, for particular systems, step
interactions switch from repulsive to attractive as separation distance decreases.
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Film quality during epitaxial growth depends largely on
the nature of surface evolution. As rough surfaces tend to
develop defects (e.g., grain boundaries, dislocations, and
voids), a flat surface is often desired throughout growth.
On the other hand, certain applications require isolated ma-
terial deposits in island or wire configurations. If properly
controlled, roughening can be used to pattern such devices.

A surface evolves by step nucleation and propagation,
as adatoms cluster into monolayer islands or attach to ex-
isting steps. The tendency is for steps to move towards
low-energy configurations. To determine their interaction
energy, Marchenko and Parshin [1] modeled steps as force
dipoles on a half-plane. Each step dipole has a moment A7
and a dilatation hw (h is step height, 7 is surface stress,
and w characterizes step structure). The calculated inter-
action energy of two steps (labeled i and j) a distance d;;
apart is

dNP(dij) = Ch*(w® + ninj7)d;;?, (1)
where C = (1 — v)/m u is a positive constant, v is Pois-
son’s ratio, u is shear modulus, and n; = =1 denotes the
orientation of a step k (whether it faces to the right or left).
According to the model, interaction energy varies mono-
tonically with separation, which means two steps will ei-
ther repel or attract irrespective of their separation distance.
This is a first order approximation valid for small values

The Marchenko-Parshin (MP) model has been used ex-
tensively over the past twenty years, and it is the basis for
our understanding of step energetics. There are examples,
however, where the model fails to explain experimental ob-
servation. Terrace width distributions measured on Cu [3]
and Ag [4] indicate that step-step interactions may be either
attractive or repulsive depending on their separations, and
observed equilibrium shapes of Pb crystallites suggest a
possible long-ranged attraction between like-oriented steps
that opposes the repulsion determined by Eq. (1) [5]. An-
other example is the mesoscopic self-organization of steps
on Pt [6], where periodic arrays consisting of several as-
cending steps followed by several descending steps form
on a vicinal surface. Evidence suggests that these rippled
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morphologies represent minimum energy configurations,
but the MP model suggests they are unstable [7—10]. The
self-organization mechanism remains unclear.

Atomistic calculations are also found to exhibit features
the MP model does not explain. Displacements about steps
[2,11,12] and interaction energies between steps [12—16]
agree only roughly with the model, and in certain cases
substantial differences are observed. For example, the
interaction energy of two opposite facing (100) steps on
{001} tungsten was found to vary as d;; = for separations
less than about 250 step heights [12], unlike the d,-;z be-
havior of Eq. (1). On the same surface, opposite facing
(110) steps were found to attract, whereas the MP model
suggests they repel. These effects cannot be explained by
short-ranged corrections of quadrupoles and higher-order
multipoles to Eq. (1).

Many of these observations can be understood with a
departure from the half-plane simplification to account ex-
plicitly for the stepped geometry. Kukta and Bhattacharya
[17] calculated the displacement field of an isolated step
and found that the first-order correction is of a logarith-
mic order, weaker than a dipole field but stronger than a
quadrupole field. A similar correction ought to appear in
the interaction energy, establishing a distinct intermediate
ranged behavior.

The model is fairly simple. The elastic field is that of a
dipole applied on a stepped surface, as depicted in Fig. 1,
rather than a flat surface. At points within a distance b
from the center of the step, the surface shape (or step
structure) is arbitrary, whereas the terraces (| y| > b) are
flat. Length b is on the order of step height # and can
be regarded as a structural parameter, for example, step
“width.” Quadrupole and higher-order source fields can
be introduced to account for further structural details but
are omitted because they decay much faster than a dipole
field. The traction-free boundary condition is enforced on
each terrace, and equilibrium within r < b is enforced by
balancing forces and moments about the step.

A series expansion of the elastic field, convergent for
small values of &/ r, can be obtained to any order accuracy.
Up to second order, displacement on the terraces of an
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FIG. 1. Schematic of a surface step. The elastic field is deter-
mined by a dipole moment .7 and dipole dilatation hw.

isolated step are calculated as [17]
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To leading order the result is equivalent to the MP model.
Note that the displacements of a dipole and quadrupole
on a half-plane decay as 1/r and 1/r2, respectively. The
logarithmic term in Eq. (3) decays at a rate intermediate
to these two source fields and is a first-order correction to
the MP model. Comparing Eqgs. (2) and (3) to atomistic
results establishes values for the constants w and 7, thus
characterizing the leading order and first-order correction
for a particular step [18]. The parameter b cannot be
distinguished from a quadrapole source and is therefore
associated with a correction of higher order.

To evaluate the interaction energy between steps, one
needs the elastic field for the case of two steps. Un-
fortunately, the result cannot be obtained by superpos-
ing isolated step fields because adding a step alters the
domain. Nevertheless, the calculation is tractable, and a
closed-form solution has been obtained following the ap-
proach outlined by Kukta and Bhattacharya [17]. As the
explicit equations for the stresses and displacements are
too lengthy to include here, they will be presented in a dif-
ferent communication.

Eshelby [19] offers two methods for calculating the in-
teraction energy between sources of stress: a direct and an
indirect method. When the sources are decoupled, the di-
rect method is possible. However, in the present system the
elastic fields of the two steps are highly coupled and there-
fore the alternative indirect method is needed. Here the
variation in the total energy with respect to step position is
evaluated, and then the interaction energy is calculated by
integrating the result. Consider two steps, one located at
y = y; and the other at y = y;. Step orientations are de-
noted by n; and n;, which have the value of +1 if the step
faces the +y direction, as in Fig. 1, or —1 if it faces the
opposite direction. Holding the position of step j fixed, the
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energy release rate for the motion step i in the y direction
is given by [19]

Filv) = =22 e [ qar. @
dyi G

where e, is a unit vector in the y direction, P =
WI — (Vu)? o is Eshelby’s energy-momentum tensor, W
is strain energy density, I is the identity tensor, V is
the gradient operator, u is displacement, o is stress,
and superscript 7' denotes the transpose of a tensor. The
integration contour in Eq. (4) envelops step i, starting on
its lower terrace and ending on its upper terrace, and its
outward unit normal is q. It is noted that the integral is
path independent, which provides a useful check of the
lengthy calculation. The total energy Ey consists of the
interaction energy ®;;(d;;), which depends on the relative
position d;; = y; — y; of the steps, plus contributions that
are independent of step position such as step and surface
excess energies. Equation (4) sifts out all contributions
but the interaction energy, and therefore one may calculate
the interaction energy as

®;i(d;j) = — f Fi(yi)dy; . (5)
To third order in //d,;;, the result is
Cw2n1~ h3 b
bij(dij) = ¢;; (di)) d?j ;|
(6)
where qb,l\,/[ P is the MP result given by Eq. (1) and n;; =

n;, — n;.

The ]roughness correction, which is the last term in
Eq. (6), vanishes for the case of like-oriented steps (n; =
n;). Hence, the interaction energy is no different from the
MP model. Atomistic calculations support this result, with
energies exhibiting an almost exact 1/ d,-zj decay except for
separations of a few step heights, where dipole-quadrupole
interactions of the form 1/ d?f become strong [12]. The
correction is nonzero for steps of opposite orientation, and,
depending on the relative magnitudes of 7 and w, it may
be significant for quite large step separations. In fact, when
T = w, the contribution qb,-l}/[P vanishes and the correction
becomes the leading-order term.

Figures 2 and 3 compare the predictions of Egs. (1) and
(6) with interaction energies calculated with EAM (embed-
ded atom method) for unlike-oriented steps on the {001}
surface of bce tungsten. Step height is & = 1.5826 A,
which is half a unit cell, and C = (1 — v)/7u =
0.2286 A3/eV. Surface stress is isotropic with a value
7= 0.188 eV/A2, and, with this value, Eq. (2) demon-
strates excellent agreement with EAM displacements.
Comparing Eq. (3) with EAM displacements determines
values of @ = 0.319 eV/A? for a (100) oriented step and
w = 0.241 eV/A? for a (110) step. The values differ be-
cause the two orientations have different atomic structures.
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FIG. 2. Interaction energy versus separation distance for

unlike-oriented (100) steps on {001} W. The value b = 2h is
used for Eq. (6).

The case of (100) steps in both mesa (monolayer is-
land) and pit (surface depression) configurations is plot-
ted in Fig. 2. The MP model suggests that the interaction
is equivalent for these two configurations; however, both
Eq. (6) and EAM show different trends for separations less
than about 200 step heights. The interaction energy for a
mesa is about 20% greater than a pit for a step separa-
tion of 200k and about 225% greater for a 10h separa-
tion. Over a range of separations, between about 10/ and
1004, the interaction energy for the pit appears to decay
similar to d;; 1'6, as observed elsewhere [12]. Equation (6)
agrees well with EAM results for separations larger than
4h. Slight differences for the largest separations plotted
are due to finite domain effects in the EAM calculation.
Recall that the value of b is on the order of /& and that
its effect is short ranged and cannot be distinguished from
that of a quadrupole source.

For (110) steps, the roughness correction is more sig-
nificant because the difference between w and 7 is smaller.
For example, while Eq. (1) suggests mesas and pits have
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FIG. 3. Interaction energy versus separation distance for (110)
steps on {001} W in a pit configuration. The value b = 1.44 is
used for Eq. (6).
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the same interaction, Eq. (6) determines the mesa’s inter-
action energy to be about 60% larger than the pit’s for a
200h separation distance (compared with 20% in the (100)
case). For smaller separations, the difference can be sev-
eral orders of magnitude. Figure 3 is a log-log plot of the
absolute value of interaction energy for a pit, comparing
the two continuum models with EAM results. Negative
and positive values are labeled in the figure. Equation (1)
suggests the step-step interaction is repulsive for all sepa-
rations, while both Eq. (6) and EAM determine transitions
from repulsion, to attraction, and back to repulsion as the
steps become closer. Equation (6) determines the attractive
region to lie between the maximum energy at |d;;| = 20h
and the minimum energy at |d;;| = 4h. The separation dis-
tance Id,'jl ~ 4h corresponds to a metastable state. While
the model may not be accurate for such small separations,
EAM also suggests a metastable state near this separation
distance. The mesa interaction (not plotted) has the same
features as that in Fig. 2; however, its difference from the
MP model is larger. In the case where w is less than, but
nearly equal to, 7, the mesa configuration would exhibit
transitions between repulsion and attraction, while the pit
interaction would always be attractive.

Considering the pair interaction alone, one might con-
clude that roughness corrections are not important if all
steps are oriented in the same direction, for example, on
a vicinal surface. This is not the case, however, because
one must account for threefold interactions between steps
to capture the first-order effect of roughness. The energy
of a multiply stepped surface can be written as

E = Zt/fi + % ZZ ¢ij(dij)

i j#Fi

+ % D> D Fuldy.djp), @)

i jFIkFL,]

where ¢;; is given by Eq. (6) and Fj is threefold interac-
tion between steps, which is of the same order as the last
term in Eq. (6). The explicit form of F;;; will be presented
elsewhere, but a simple example is offered here to demon-
strate its significance for like-oriented steps.

Consider the interaction between a step bunch, with N
like-oriented steps, and a single step of the same orienta-
tion that are a distance d apart. Each step has the same
height &, “width” parameter b, and constitutive constants
7 and w. Assuming the distance & between bunched steps
is small compared to d, the bunch can be approximated by
a single step of height Nk, width parameter (b/8)'/V 8,
and constitute constants 7 and . This is deduced by
building step bunches from the elastic field of two steps
and explicitly taking their separation to be small compared
to distance from the pair. The elastic field for the case of
two different height steps was used to proceed beyond a
two-step bunch. The interaction energy Ei, between the
bunch and the single step is calculated as
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FIG. 4. Absolute value of interaction energy versus distance
between an N-step bunch and a single step as determined by
Eq. (8). Filled and open circles denote maxima and minima,
respectively. Constants 7 and w are given in Fig. 2.
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where 6 = b was assumed for simplicity. The last term
is the roughness correction, where the plus sign is used
when the step lies below the bunch, as in the inset of Fig. 4,
and the minus is used if it lies above the bunch.

Figure 4 plots the case where the step lies below the
bunch for (100) steps on {001} W. The solid line cor-
responds to N = 1 and is also the prediction of the MP
model for arbitrary N, which suggests the features repel
for all separations. For N =5, the step and the bunch
also repel irrespective of separation, but for d less than
about 100/ a substantial change in the character of the in-
teraction is apparent. For bunch sizes N > 6, the energy
has a minimum and a maximum, which bound a range
of separations where the interaction becomes attractive.
For example, the respective minima and maxima occur
at d = 4h and d = 29h for N = 10 and d =~ 3.5k and
d = 92h for N = 20. The size of the attractive region
is found to grow at a rate faster than N, which should
have significance for coarsening of step bunches and facets.
This has not yet been tested with atomistics. When the step
lies above the bunch, Eq. (8) determines that the features
attract (for N > 1) only when they are very close together
(less than a few step heights apart). However, the model
is not accurate for such separations.

It is found that roughness can have a significant effect on
the elastic interactions of atomic steps, and in certain cases
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it determines a transition between repulsion and attraction
with separation distance. In addition to altering the pair
interaction between steps, the lowest order contribution of
roughness to energy of crystal surface adds threefold step
interactions that may have nonintuitive consequences. It
is hoped that these will explain certain unresolved issues
such as the mesoscopic self-organization of steps on Pt [6].
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