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A linear theory is developed for ionization cooling of muon beams in periodic channels that can provide
cooling of the transverse emittances and also of the longitudinal emittance via emittance exchange. The
channels incorporate solenoids and quadrupoles for transverse focusing, dipoles to generate dispersion,
wedged absorbers for ionization, and rf cavities for acceleration. The beam evolution near equilibrium is
described by coupled first-order differential equations for five generalized emittances with two excitation
sources. The results should be useful for understanding the cooling process and for designing cooling
channels of future muon colliders and neutrino factories.
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The physics potentials of neutrino factories and muon
colliders have stimulated worldwide studies of the feasi-
bility of high-energy muon accelerators [1,2]. The biggest
challenge is to reduce the 6D phase-space volume of a
muon beam by orders of magnitude within a fraction of the
muon’s decay time. Ionization cooling has been proposed
as the most promising candidate for this purpose [3,4]. The
principle of ionization cooling is similar to that of syn-
chrotron radiation damping in electron storage rings [5]
and arises from the fact that a particle’s momentum loss is
parallel to the momentum while the acceleration is in the
forward direction. Ionization cooling in solenoidal focus-
ing channels has been shown to be effective in reducing the
transverse emittances of muon beams [1,2]. However, ion-
ization cooling of the longitudinal emittance is not straight-
forward because the derivative of the energy loss with
respect to the muon momentum is either too small or of
negative sign. Longitudinal cooling may be achieved in an
emittance-exchange scheme [6] in which dispersions are
introduced to transversely separate muons of different mo-
menta, and then wedged (thickness varying transversely)
absorbers are used to reduce momentum spread. Studies
of ionization cooling in full 6D phase space have mainly
relied on simulations due to the complexity of the prob-
lem. In this Letter, we develop an analytic, linear the-
ory of beam evolution in 6D phase space during ionization
cooling in periodic channels. We use the moment-equation
approach which is well established in studying beam dy-
namics. Some previous applications to ionization cooling
are in Refs. [7–11]. Assuming that the dissipative force
from material interaction is weak, the beam moments near
equilibrium can be described in terms of the envelope func-
tions determined by the Hamiltonian forces (from the mag-
nets and rf) and a set of generalized emittances [12,13].
We derive a set of coupled first-order differential equations
for the generalized emittances that describe the effects of
damping, emittance exchange, and heating due to multiple
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scattering and energy straggling. The equations turn out to
be simple and should be useful.

To begin, we introduce the phase-space vector X �
�x,px , y,py, z, d�T , where x, px , y, and py are the muon’s
transverse coordinates and canonical momenta relative to
the reference particle with momentum p0; and z and d �
�p 2 p0��p0 are the longitudinal coordinate and momen-
tum deviation, respectively. The equation of motion using
path length s as the time variable is of the form

dX

ds
� JHX 1

dX

ds

Ç
M

. (1)

Here, the first term on the right-hand side is the
Hamiltonian part of the motion, where J is the simplectic
matrix whose elements are the Poisson brackets of the
phase-space variables, and H is the symmetric matrix
associated with the Hamiltonian H via H � XT HX�2.
The last term in Eq. (1) represents the interaction with
materials giving rise to weak dissipation and diffusion.

The Hamiltonian considered in this Letter is

H �
1
2

�p2
x 1 p2

y �| {z }
drift

1
1
2

k2�x2 1 y2� 2 k �xpy 2 ypx�| {z }
solenoid

2
xd

r
1

x2

2r2| {z }
dipole

1
1
2

g �x2 2 y2�| {z }
quadrupole

1
1
2

�d2 1 Vz2�| {z }
longitudinal and rf

.

Here k�s� �
q
2p0

Bs�0, 0, s� is the normalized on-axis
solenoid field strength, where q is the muon’s charge;
r�s� �

q
p0

By�0, 0, s� is the radius of curvature of the

reference trajectory; g�s� �
q
p0

≠By

≠x is the quadrupole gra-
dient; and V �s� represents longitudinal focusing from rf.
The quadrupole gradient is chosen as g�s� � 21�2r�s�2
so that the net focusing due to the solenoids, dipoles,
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and quadrupoles in the x- and y directions have the same
strength K�s� � k�s�2 1 1�2r�s�2. Symmetric focusing
is preferred since the main solenoid field continuously
rotates the beam and tends to make it symmetric.

As shown for transverse cooling [10], beam motion in
the Larmor frame is much simpler because transverse cou-
pling from the angular momentum term is removed. Ro-
tating to the Larmor frame, the Hamiltonian becomes

H̃ �
1
2

�p̃2
x 1 p̃2

y � 1
K
2

�x̃2 1 ỹ2�

2
�x̃ cosf 1 ỹ sinf�d

r�s�
1 rf .

Here the symbol � indicates quantities in the Larmor
frame, which is rotating with the angle f�s� �

Rs
0 k�s̄� ds̄.

To further simplify, we decouple the transverse and lon-
gitudinal motions by introducing the dispersion functions
D̃x and D̃y , and the dispersion transformation [14]

x̃ � x̃b 1 D̃xd, p̃x � p̃xb
1 D̃0

xd, �x $ y� ,

z � ẑ 2 D̃0
xx̃ 1 D̃xp̃x 2 D̃0

yỹ 1 D̃yp̃y , d � d̂ .

Hereafter a prime indicates differentiation with respect to
s. By requiring the dispersions to satisfy the equations

D̃00
x 1 KD̃x �

cosf
r

, D̃00
y 1 KD̃y �

sinf

r
,

and to be zero at the rf cavities, the transverse and longi-
tudinal motions are decoupled with the new Hamiltonian

H̃b �
1
2

� p̃2
xb

1 p̃2
yb

� 1
K
2

�x̃2
b 1 ỹ2

b�

1
1
2

�Id2 1 Vẑ2�

where I�s� � 1 2
D̃x cos�f�s��

r�s� 2
D̃y sin�f�s��

r�s� .
The material part of Eq. (1) is of the form

dX

ds

Ç
M

�
dX

ds

Ç
M,D

1 J � AX 1 J . (2)

Here �dX�ds�jM,D is the dissipative part of the interaction
with material, A is the dissipation matrix, and J represents
the stochastic excitations discussed later. The dissipative
part of the equation of motion is given by

dx
ds

Ç
M,D

�
dy
ds

Ç
M,D

�
dz
ds

Ç
M,D

� 0 , (3a)

dpx

ds

Ç
M,D

� 2h�px 1 ky� , (3b)

dpy

ds

Ç
M,D

� 2h�py 2 kx� , (3c)

dd

ds

Ç
M,D

� 2�≠dh�d 2 �≠xh�x 2 �≠yh�y . (3d)

Here h �
1

py

dE
ds is a positive quantity characterizing the

average force due to ionization energy loss for a muon of
momentum p and velocity y. The terms �px 1 ky� and
184801-2
�py 2 kx� are, respectively, the x and y components of the
kinetic momentum. The wedged absorbers are treated as
having uniform thickness with density depending linearly
on the transverse coordinates. To linear order, the energy
dependence of ionization energy loss is given by ≠dh. The
simple model in Eqs. (3b) and (3c) has been shown to work
well for transverse cooling [10].

The matrix A in Eq. (2) can be decomposed into
two parts A � AH 1 AD, where AH � �A 1 JATJ��2.
The matrix AH can be considered as belonging to the
Hamiltonian part since it is of the form J times a symmet-
ric matrix [13]. We drop this part and use only AD as the
dissipation matrix. (We may assume that the Hamiltonian
contains negligibly small additional terms that cancel the
terms due to AH.) Then Eq. (3) becomes

dx
ds

Ç
M,D

� 2
1
2

hx , (4a)

dpx

ds

Ç
M,D

� 2
1
2

hpx 2 hky 1
1
2

�≠xh�z , (4b)

dz
ds

Ç
M,D

� 2
1
2

�≠dh�z , (4c)

dd

ds

Ç
M,D

� 2
1
2

��≠dh�d 1 �≠xh�x 1 �≠yh�y� . (4d)

The equations for the y plane are the same as those for the
x except a positive sign for the hkx term.

The phase-space distributions relevant in linear approxi-
mation are Gaussian distributions that can be specified by
the quadratic beam-moment matrix S � �XXT �, where the
brackets indicate the averaging. From the equation of mo-
tion we have the moment equation

dS

ds
� �JH 1 AD�S 1 S�JH 1 AD�T 1 B . (5)

Here the diagonal matrix B � diag�0,x, 0, x, 0,xd � arises
from the stochastic excitations represented by J in Eq. (2).
There are two different sources of excitations: multiple
scattering characterized by the projected mean-square an-
gular deviation per unit length x � � 13.6 MeV

py �2 1
Lrad

, where
Lrad is the radiation length of absorbers, and energy strag-
gling characterized by the mean-square relative energy de-
viation per unit length xd.

We need to make two changes of variables as in the
case of the Hamiltonian part of the motion. The change
to the Larmor frame is easy; since the muons’ local inter-
action with material is isotropic, Eqs. (4) and (5) will not
be changed by a rotation and thus apply to the variables
�x̃, p̃x, ỹ, p̃y , z,d�. Changing variables to �x̃b , p̃xb

, ỹb, p̃yb
,

ẑ,d� via dispersion transformation is straightforward but
the resulting equations are cumbersome and not written
down explicitly. From now on, we will drop the � symbol
to simplify the notation.

The moment equation is formidable since it represents
a coupled evolution of the 21 independent moments in the
symmetric 6 3 6 matrix S. However, the system becomes
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greatly simplified if consideration is limited to the behav-
ior near equilibrium, as we do in the rest of this Letter. It is
physically reasonable to assume that the moment matrix at
equilibrium is a periodic function of s with the periodicity
of the cooling channel. If the dissipative forces are weak,
the distribution function, which is of Gaussian shape for
the linear system under consideration, must also evolve ap-
proximately as in the Hamiltonian system. The distribution
function can thus be specified by a set of quadratic single-
particle invariants with periodic coefficients. In the present
case, from the decoupled Hamiltonian Hb , we find the
following five linearly independent quadratic invariants:

Ix � gT x2
b 1 2aTxbpxb

1 bTp2
xb
,

Iy � gT y2
b 1 2aTybpyb

1 bTp2
yb
,

Iz � gLẑ2 1 2aLẑd 1 bLd2,

Ixy � gT xbyb 1 2aT
xbpyb

1 ybpxb

2
1 bT pxb

pyb
,

Lz � xbpyb
2 ybpxb

.

Here the envelope functions, gT , etc., are the periodic so-
lution of the following equations:

b0
T � 22aT , a0

T � KbT 2 gT , gT �
1 1 a

2
T

bT

and

b0
L � 22IaT , a0

L � VbT 2 IgT , gL �
1 1 a

2
L

bL
.

In the above, Ix , Iy , and Iz are the familiar Courant-
Snyder (C-S) type invariants [15] for each of the three
degrees of freedom; Lz is the angular momentum; and Ixy

is the invariant obtained by taking the Poisson bracket of
Lz and Ix. Note that Ix , Iy , and Ixy are associated with the
same set of the C-S parameters gT ,aT ,bT reflecting the
degeneracy of the x-y part of the Hamiltonian Hb. The
four transverse invariants were discussed in the context of
an isotropic harmonic oscillator [16]. The five invariants
form a complete set of the quadratic invariants.

Averaged over the phase space, these five single-
particle invariants lead to five beam invariants that are
usually called beam emittances:

ei �
1
2

�Ii�, i [ 	x,y, z, xy,L
 . (6)

Using emittances and invariants, the normalized equilib-
rium distribution can be written as

r�X� �
1

�2p�3e6D
e

2
ey Ix 1ex Iy 22exy Ixy 22eLLz

2�exey 2e2xy 2e2L �
2 Iz

2ez

where the 6D emittance is

e6D � �exey 2 e2
xy 2 e2

L�ez .
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We can then compute the corresponding nonzero moments
as follows:

��x2
b�, �xbpxb

�, �p2
xb

�� � ex�b,2a,g�T , �x $ y� ,µ
�xbyb�,

�xbpyb
1 ybpxb

�
2

, �pxb
pyb

�
∂

� exy �b,2a,g�T ,

��xbpyb
�, �yb pxb

�� � eL�1,21� ,

��ẑ2�, �ẑd�, �d2�� � ez�bL,2aL,gL� .
These equations may be viewed as the inverse of Eq. (6).

A general study of the equilibrium state for a weakly dis-
sipative, periodic system was carried out previously based
on orthogonal expansions in the linear space of the mo-
ments [13]. These authors pointed out the existence of
five invariants for systems with x-y degeneracy.

We now consider the system near but not at the equi-
librium due to interaction with material. The approach
of this system to the equilibrium may be described by a
slow s dependence of the generalized emittances. The s
derivatives can be computed by inserting the material part
of the equation of motion, Eq. (4), into the derivative
of Eq. (6) and rearranging the results with the above
beam moment expresions. In doing this we note that the
Hamiltonian forces do not contribute and the betatron
and synchrotron motions are decoupled. The stochastic
contributions can be derived from Eq. (5). The resulted
emittance evolution equations are

e0
s � 2�h 2 ec2�es 1 ec1ea 1 es1exy 1 beL 1 xs ,

e0
a � 2�h 2 ec2�ea 1 ec1es 1 xa ,

e0
xy � 2�h 2 ec2�exy 1 es1es 1 xxy ,

e0
L � 2�h 2 ec2�eL 1 bes 1 xL ,

e0
z � 2�≠dh 1 2ec2�ez 1 xz ,

where es and ea are the rotationally symmetric and asym-
metric emittances �ex 6 ey��2, e � j �Dj ? j �≠hj�2 is half
of the maximum exchange rate through dispersions and
wedges, c6 � cos�uD 6 uW � and s6 � sin�uD 6 uW �
with uD and uW being the orientations of the dispersion
vector and the wedges, and b � hkbT 1 aTes2 1

bTe0s02 with e0 � j �D0j ? j �≠hj�2 and s02 � sin�uD0 2

uW�. The excitation terms are

xs �
1
2

bT x 1
1
2
Hsxd, xa �

1
2
Haxd ,

xz �
1
2

bLxd 1
1
2

gL�D2
x 1 D2

y �x ,

xxy �
1
2
Hxyxd, xL �

1
2
HLxd .

Here the H functions are defined similarly as the
quadratic invariants but replacing phase-space variables
with dispersion functions. For example, as in radiation
damping theory, Hx � gT D2

x 1 2aTDxD0
x 1 bTD02

x .
184801-3



VOLUME 88, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 6 MAY 2002
Note that the emittance exchange is accomplished by
trading the damping rate ec2 between the transverse and
longitudinal degrees of freedom. Without excitations,

de6D

ds
� 2�2h 1 ≠dh�e6D .

Therefore the total 6D damping rate is independent of the
emittance exchange. This is equivalent to the Robinson
theorem for radiation damping [5].

Let us make a few observations on the emittance evo-
lution equations. First, as the dispersions go to zero,
they reduce to our previous result on the transverse cool-
ing in straight solenoid channels [10]. Second, the lon-
gitudinal and transverse evolutions are decoupled (except
exchanging the damping rate). Hence the longitudinal evo-
lution can be analytically integrated. Third, because the
emittances will not change much in one period, it should
be a good approximation to average the evolution equa-
tion over one period. After averaging, the emittances
can be solved by straightforward diagonalization. Particu-
larly, the equilibrium longitudinal and symmetric trans-
verse emittances are then given by

eeq
z � xz� ≠dh 1 2ec2 ,

eeq
s �

h 2 ec2 xs 1 ec1 xa 1 es1 xxy 1 b xL

h 2 ec2
2 2 ec1

2 2 es1
2 2 b

2 .

Here the overline indicates averaging over a period.
Fourth, to achieve the maximum longitudinal cooling, the
ec2 term needs to be maximized by increasing dispersion,
the number of wedges, and wedge angle, and by orient-
ing the wedge along the dispersion vector (i.e., Du �
uD 2 uW � 0). If the wedges are placed at dispersion
maxima with Du � 0, the term b reduces to b � hkbT ,
which can be designed to average to zero. Fifth, it is easy
to see, from the excitation terms, that an obvious way to
limit heating is to reduce the transverse and longitudinal
beta functions at the absorbers. It is also important to
optimize the dispersions to balance the needs of large
emittance exchange and small excitations.

As an example, we consider a 6D cooling channel modi-
fied from the first section of the “SFOFO” transverse cool-
ing channel used in the feasibility study-II [2]. About
20 cm dispersion is introduced in the middle of the 5.5 m
solenoid cooling cells. Lithium-hydride wedged absorbers
with 90± vertex are placed at the dispersion maximum to
obtain emittance exchange. Using the emittance evolu-
tion equations, we tracked the emittances over 500 m for
an axisymmetric incoming beam with es � 5 mm rad and
ez � 50 mm rad, which is close to the feasibility study
values. Figure 1 shows the evolution of es and ez . The
other three emittances are orders of magnitude smaller.
The transverse emittance has damped to its equilibrium
value while the longitudinal emittance is still far from its
equilibrium value of 1.8 mm rad. This is partly due to the
large initial longitudinal emittance and partly because the
184801-4
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FIG. 1. Transverse and longitudinal emittance evolution.

longitudinal damping coefficient is only 20% of the trans-
verse one.

In closing, we developed a linear theory of 6D ionization
cooling that should be useful for understanding the cool-
ing process and for initial evaluation of cooling channels.
The next step is to include the nonlinearity and develop
practical designs, a subject of ongoing research.
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