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Broken Symmetries and Directed Collective Energy Transport in Spatially Extended Systems
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We study the appearance of directed energy current in homogeneous spatially extended systems coupled
to a heat bath in the presence of an external ac field E�t�. The systems are described by nonlinear field
equations. By making use of a symmetry analysis, we predict the right choice of E�t� and obtain directed
energy transport for systems with a nonzero topological charge Q. We demonstrate that the symmetry
properties of motion of topological solitons (kinks and antikinks) are equivalent to the ones for the energy
current. Numerical simulations confirm the predictions of the symmetry analysis and, moreover, show
that the directed energy current drastically increases as the dissipation parameter a reduces.
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The idea of rectifying energy transport with the help of
fluctuations has been discussed for several years in con-
nection with molecular motors and other nonequilibrium
properties of biological systems [1], electrical currents
in superlattices [2], and voltages in Josephson junction
coupled systems [3,4], to name a few. The fluctuations
have zero mean value; i.e., the dc component is absent.
The reduction of the underlying problem, namely, directed
energy transport, to a particle moving in a space-periodic
but asymmetric (ratchet) potential allowed one to study the
resulting directed current in great detail [5] (for a recent
review see [6]). A recently elaborated symmetry approach
to this problem established a clear relationship between di-
rected currents and broken space-time symmetries [7–9].
The essential step was to separate the unavoidable correla-
tions in the fluctuations from the uncorrelated ones. This
is easily obtained by replacing the fluctuations as a super-
position of ac driving fields and uncorrelated white noise.
An important consequence is that the symmetries may be
broken either by violating the reflection symmetry of the
potential in space or by violating the shift symmetry of the
ac fields. Thus, a particle may display a directed motion
also in the case of a space-symmetric potential. Another
interesting result is the persistence of directed currents in
the Hamiltonian limit of systems exposed to ac fields but
decoupled from the heat bath [7,8].

A very important question is whether the symmetry ap-
proach can be generalized to the case of interacting many-
particle systems (for related studies see [6,10–12]). In this
Letter, we focus on nonlinear partial differential equations,
which can be considered as classical analogues of quantum
models of interacting particles [13]. We show that such
systems allow for a directed energy transport when being
driven by a proper combination of ac forces. The success
of such a generalization will not only underline the general
validity of the symmetry analysis, but will also allow for
a systematic symmetry analysis of nonadiabatic nonlinear
response functionals for many-body theories.
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We study the properties of nonlinear Klein-Gordon
equations for a scalar field w which depends both on a
spatial coordinate x and time t:

w,tt 2 c2
0w,xx 1 aw,t 1

dU

dw
� f�t, x� ,

f�t, x� � E�t� 1 j�t, x� ,
(1)

where c0 is the limiting propagation speed of small ampli-
tude plane waves, a is the dissipation parameter determin-
ing the inverse relaxation time in the system, and f,z �
≠f�≠z. The ac field E�t� has zero mean and period T .
The Gaussian white noise j is characterized by the stan-
dard correlation function �j�t, x�j�t0, x0�� � 2a

b d�x 2

x0�d�t 2 t0�, where b is the inverse temperature. The po-
tential U�z� is assumed to have several minima of identical
height for z � zi, i � 1, 2, . . . . We choose fixed bound-
ary conditions: w�x ! 2`� � zl , w�x ! 1`� � zm.
With these boundary conditions, we define the topological
charge Q � m 2 l which will be of importance in the
following. The energy current density j, generated by the
field w in the absence of external forcing and damping,
can be obtained from the standard continuity equation
[14]. It leads to the following expression for the energy
current J:

J�t� �
Z 1`

2`

j dx � 2c2
0

Z 1`

2`

w,tw,x dx . (2)

Next we turn to the symmetry analysis of (1) and (2). It
is carried out in the absence of j in (1), as it does not af-
fect the symmetries. We note that, for Q � 0, J changes
its sign under the transformation x ! 2x. Equation (1)
is invariant under the space inversion. Consequently, we
conclude that, for zero topological charge, Q � 0, the
time-averaged energy current �J� �t� � 1

t

Rt
0 J�t� dt van-

ishes exactly for large averaging times t.
In order to study the possibility of the appearance of a

nonzero energy current in the presence of a nonzero topo-
logical charge, Q fi 0, we note that the topological charge
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Q fi 0 is invariant under the combined symmetry opera-
tion x ! 2x and w ! 2w 1 zl 1 zm. The same sym-
metry operation changes the sign of the energy current,
and all we need is to ensure that the equation (1) remains
invariant. This is now possible only if the ac field pos-
sesses shift symmetry and the potential U�z� is symmetric
around z � �zl 1 zm��2. Thus, we arrive at the symmetry
operation,

x ! 2x, w ! 2w 1 zl 1 zm, t ! t 1
T
2

,

(3)

which leaves the equation (1) invariant and changes the
sign of the energy current as the constraints,

E�t� � 2E�t 1 T�2� ,

U

µ
z 2

zl 1 zm

2

∂
� U

µ
2z 1

zl 1 zm

2

∂
,

(4)

hold. In such a case, we may conclude that the directed
energy current vanishes [15]. Violating (4) we lose the
symmetry (3) and, consequently, may expect a nonzero
energy current provided no further hidden symmetries are
overlooked.

Most interesting is that the conditions (4) can be violated
by choosing a function E�t� which is not shift symmetric.
A simple choice is

E�t� � E1 cosvt 1 E2 cos�2vt 1 D� , (5)

with E1 fi 0 and E2 fi 0. In particular, such an ac field
allows one to generate a nonzero energy current in the
well-known sine-Gordon equation with

U�z� � 2 cosz , (6)

which we will consider in the following. At the same time,
we stress here that any other choice of the ac drive E�t�
which is not shift symmetric (e.g., a corresponding se-
quence of pulses) will do the job, as well as any other po-
tential U�z� which meets the above described conditions.

Of special interest is that, in the Hamiltonian limit as
a ! 0, time reversal symmetry is recovered: The symme-
try operation t ! 2t leaves (1) invariant, provided E�t�
is symmetric: E�t� � E�2t�. As time reversal always
changes the sign of the energy current (2), zero average
energy current will be a consequence. Thus, for the un-
derdamped case a ø 1, we expect a change of sign of the
energy current upon varying D because, for the particular
values of D � 0, p time reversal is approximately restored
and the directed energy current disappears.

As discussed above, a necessary condition for a directed
energy current is a nonzero topological charge Q. It im-
plies the presence of an excess of kinks over antikinks
or vice versa. The simplest case is Q � 1 as a single un-
pinned kink is present on average in the system. As a
kink possesses a nonzero rest energy Ek � 8c0, it is natu-
ral to expect that the nonzero energy current is generated
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by a directed motion of such a kink. Indeed, assuming
that the kink position X and velocity V are described by
expressions

X�t� �
1

2pQ

Z 1`

2`
xw,x dx ,

V �
1

2pQ

Z 1`

2`
xw,xt dx ,

(7)

we observe that the symmetry operation (3) changes the
sign of V . Thus, we find that, if the energy current vanishes
by symmetry, the same is true for the average velocity
of a kink. This shows the intimate connection between
a directed energy current and coherent kink excitations as
carriers of such an energy. In [12] a directed kink motion
was obtained numerically for the first time for the case
(5),(6) together with a study of its complex dynamics. Note
that in [16–18] a directed kink transport has been obtained
by breaking the reflection symmetry of U�z� for E2 � 0.

If the temperature and thus the amplitude of j is large
enough, additional kink-antikink pairs are excited in the
course of evolution. Since the space inversion �x ! 2x�
does not change Eq. (1), transforms Q ! 2Q, and kinks
into antikinks with inverted velocities, the average velocity
of a kink-antikink pair is zero. Consequently, the genera-
tion of kink-antikink pairs does not affect the net energy
current of the system predefined by the value of topologi-
cal charge Q.

With these analytical results we turn to a numerical in-
vestigation. We used a standard discretization scheme and
integrated the following coupled differential equations us-
ing a fourth-order Runge-Kutta method (see also [19]):

f̈n 2 c2
0�fn21 2 2fn 1 fn11� 1

a �fn 1 sinfn � fn�t� . (8)

Here n is an integer representing the discretization in
space. We choose the following parameters: b � 100,
c2

0 � 10, E1 � 0.2, E2 � 0.2, v � 0.1, t � 50 000, 1 #

n # N � 420, and Q � 1. The boundary condition was
implemented using fN11 � f1 1 2p with the initial con-
dition of a single kink solution [20]. The particular value
of c0 ensures that the effects of discreteness on the kink
motion may be neglected [21].

The time-averaged energy current �J� as a function of
the phase shift D for three different values of dissipation
parameter a � 0.01, 0.05, and 0.2 is shown in Fig. 1. We
obtain a strong dependence of the directed energy current
�J� on D with sign changes, as expected. Furthermore,
the maximum values of the energy current increase sub-
stantially as the dissipation parameter a reduces, similar
to the case of a single particle moving in a space-periodic
potential [8]. Especially, we find an increase by a factor
of 50 when the damping a decreases from 0.2 to 0.01. Fi-
nally, we clearly observe that, as the parameter a reduces,
the zeros of the curves tend to the positions determined
by time reversal symmetry, D � 0, p. We computed in a
184101-2
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FIG. 1. Dependence of the time-averaged energy current �J�
on the phase shift D. Solid line, a � 0.05; dotted line, a �
0.01; dash-dotted line, a � 0.2. Note that the latter case a �
0.2 is scaled by a factor of 5, so the real values of �J� are 5 times
less than they appear in the plot.

similar way the time averages of V as defined in (7), and
obtained identical results upon variation of D and a. It
shows that indeed kink motion is responsible for the en-
ergy transfer.

In these simulations, the intensity of the white noise
j was small enough to prevent an excitation of a kink-
antikink pair during the simulation time. Nevertheless a
very long simulation should also show up with a sponta-
neous creation of such pairs. In order to see that this event
does not influence the symmetry analysis and especially
does not change the obtained values of the energy current
(cf. above considerations), we proceed with a comparison.
In Fig. 2 we plot the dependence of the time-averaged
energy current �J� �t� on the time of averaging t for a �
0.01 and D � p�2, as a single kink is present in the sys-
tem. In the same figure, we plot the result for the case of
additionally exciting a kink-antikink pair [20]. We indeed
observe that the value for the time-averaged energy current
does not depend on the number of additional kink-antikink
pairs. As the simulation time increases even further, soli-
ton collisions eventually may lead to the dissipation of the
pair, with one single kink remaining in the system.

Let us discuss possible mechanisms of energy current
rectification in spatially homogeneous extended systems
through directed kink motion. First we notice that in many
cases the kink motion may be mapped to the classical me-
chanics of a macroscopic particle [22]. However, a free
particle that is subject to a spatially homogeneous ac force
does not display a directed motion at all. One possible
source of the observed directed current can be relativis-
tic effects which are inherent to the considered nonlinear
Klein-Gordon field equations. They can be explicitly ob-
tained in some cases using projection techniques to derive
effective equations of motion for the kink center [22]. In
such a regime the kink motion is mapped onto the one
184101-3
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FIG. 2. Dependence of the time-averaged energy current �J�
on the averaging time t for D � p�2 and a � 0.01 for the
two cases: a single kink in the system (solid line), a single
kink and an additional kink-antikink pair in the system (dotted
line). The insets (a) and (b) show snapshots of the field w as a
function of x at some time during the simulation for these two
cases. Arrows indicate the direction of time-averaged motion of
the kink(s) and the antikink.

of a relativistic particle in the presence of damping and
the ac field E�t�. The dependence of the velocities on a

and v [12] is, however, in sharp contrast to our findings.
Thus we argue that the origin of the observed strong rectifi-
cation in the underdamped limit is due to the nonadiabatic
excitation of internal kink modes and their interaction with
the translational kink motion [12,17,23]. That will be dis-
cussed in detail in a future work.

It is worthwhile to mention a number of other ways to
generate a nonzero energy current. One case is to consider
strongly discrete systems where the appearance of a non-
negligible Peierls-Nabarro potential can generate a net
kink motion through the lattice. Also all sorts of pertur-
bations in the form of spatial modulations may act similar
to discretization effects [4,24]. Yet another way of break-
ing the symmetry has been analyzed in [25] where in ad-
dition to an ac force E�t� � cost the potential U�z, t� �
�z2 2 1�2 1 z2 sint was assumed to be time dependent.
The application of our symmetry analysis yields that the
symmetries (3) are violated and directed energy transport
occurs. It is also interesting to recall that a number of pub-
lications have been dealing with directed kink motion in
asymmetric double well potentials [18,26]. The asymme-
try was chosen in a way to entropically favor one equilib-
rium over the other one (still keeping the energy values of
the equilibria identical). Even Gaussian white noise leads
then to the directed motion of a kink. However, additional
ac fields have been shown to counterbalance the entropic
force.

While it is certain that our results may be applied to
many different physical situations, where the sine-Gordon
equation is replaced by other Klein-Gordon equations with
184101-3
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topological excitations, we stress that a particular system,
namely, an annular long Josephson junction with a trapped
fluxon, is perhaps the ideal case to verify our results. This
system is described precisely by (1) [23,27,28]. While in
[23] experimental results for E2 � 0 have been presented,
all one needs is to add the second harmonics E2 fi 0 and
vary the phase shift D. The analogue of the ac field is here
an ac homogeneous microwave radiation which traverses
the junction. Under these conditions, a trapped fluxon dis-
plays a directed motion, and, correspondingly, a dc voltage
drop across the junction appears. This effect is the ana-
logue of the energy current discussed here. Notice here
that the dc voltage drop oscillates with the phase shift D
and substantially increases in the “strong” underdamped
limit, a ø v.

We conclude this work with stating that the use of sym-
metries allowed to obtain a relationship between a directed
energy current and directed kink motion. This may be of
further interest as it shows an intimate connection between
symmetry breakings and the relevance of coherent excita-
tions and their properties in many-body theories. Finally,
we note that nonlinear Klein-Gordon systems which do
not admit kink or antikink excitations (zero topological
charge) do not allow for directed energy currents induced
by ac forces, and that the above considerations can be used
without change for spatially discrete systems.
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