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Generating Entangled Two-Photon States with Coincident Frequencies
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It is shown that parametric down-conversion, with a short-duration pump pulse and a long nonlinear
crystal that is appropriately phase matched, can produce a frequency-entangled biphoton state whose
individual photons are coincident in frequency. Quantum interference experiments which distinguish this
state from the familiar time-coincident biphoton state are described.
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Spontaneous parametric down-conversion (SPDC) has
been the entanglement source of choice for experimental
demonstrations of quantum teleportation, entanglement-
based quantum cryptography, Bell-inequality violations,
etc. However, the biphoton state generated via SPDC un-
der the customary phase-matching conditions is maximally
entangled only when a continuous-wave (cw) pump is used
[1,2]. In pulsed-pump experiments, the fringe visibility in
biphoton interference measurements decreases as the du-
ration of the pump pulse is reduced [3]. The timing and
pump-intensity advantages of pulsed experiments has thus
spurred work to retain or restore maximal entanglement in
the pulsed regime [4].

In this paper a new method for obtaining maximal entan-
glement from pulsed SPDC is reported. Our approach uses
a long nonlinear crystal and extended phase-matching con-
ditions tailored specifically to pulsed operation. As such, it
does not require any filtering or postselection, and it reaps
the high-conversion-efficiency advantage that long crystals
afford. Furthermore, the biphoton states that it produces
are comprised of photons that are coincident in frequency,
in contrast to the usual cw phase-matching case whose
biphotons exhibit coincidence in time. Coincident-in-
frequency entanglement is important because the N-
photon version of such a state has been shown to improve
the accuracy of time-of-flight position sensing or clock
synchronization by a factor of v/N [5].

Consider SPDC with a cw pump and conventional phase
matching that is operated at frequency degeneracy, i.e.,
phase matched such that the center frequencies of its signal
and idler equal half the pump frequency. This system
produces a biphoton of the form

18) = [ 2 plw)lo,/2 = ohlwp/2 + o) ()

Here, |w,)s and |w;); are single-photon signal and idler
states in which the photons are present at frequencies w
and w;, respectively; ), is the pump frequency; and ¢ (w)
is the spectral function of the state, so that |¢(w,/2 —
w)|? is the signal’s fluorescence spectrum. The notation
|TB) indicates that Eq. (1) is the usual twin-beam state of
SPDC. The frequency entanglement of this state dictates

183602-1 0031-9007/02/88(18)/183602(4)$20.00

PACS numbers: 42.50.Dv, 03.65.Ud, 03.67.—a, 42.25.Hz

that a signal photon at frequency w,/2 — w is accompa-
nied by an idler photon at frequency w,/2 + w. The sum
of the signal and idler frequencies is therefore fixed at the
pump frequency. By Fourier duality, this implies that the
signal and idler photons occur in time coincidence —to
within a reciprocal fluorescence bandwidth—as has been
shown in the famous “Mandel dip” experiment [6].

On the other hand, the SPDC biphoton that will be stud-
ied in this paper is

DB) = [ 42 gy /2 + whloy/2 + 0k @)

In this state, a signal photon at w, /2 + w is accompanied
by an idler photon at the same frequency. This coinci-
dent-in-frequency behavior leads, via Fourier duality, to
symmetrically located occurrences in time. In particular,
a signal photon appearing at 7y + ¢ is accompanied by an
idler photon at Ty — ¢, where T is the mean time of arrival
of the biphoton pulse. Because this biphoton possesses
a narrow distribution in signal-minus-idler difference
frequency, we have dubbed it the difference-beam (|DB))
state. Note that its mean time of arrival, Ty, plays the role
of the fluorescence center frequency, w, /2, in comparing
the DB and TB states. Thus, whereas the photons in [TB)
may be discriminated by frequency measurements,
those in |DB) may be distinguished via time-of-arrival
measurements.

The rest of the paper is organized as follows. First,
we derive the output state of SPDC. The phase-
matching conditions that are needed to create the DB
state are then obtained and explained. Next, we present
quantum interference experiments that can distinguish
between the TB and the DB states. Finally, we give a
feasibility study for |[DB) generation using periodically
poled potassium titanyl phosphate (PPKTP).

A textbook treatment of the SPDC process (see, for ex-
ample, [7]) allows us to deduce the state at the output of
a compensated SPDC crystal. We will give a brief deriva-
tion here assuming colinear plane-wave operation. In the
interaction picture under the rotating-wave approximation,
the Hamiltonian that gives rise to the creation of the two
down-converted photons starting from a single pump pho-
ton is given by
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where y? is the nonlinear coefficient and L is the length
of the down-conversion crystal, S is the pump-beam area,
and E) and EC) = (E)1 are positive-frequency and
negative-frequency electric field operators with the sub-
scripts {p, s, i} denoting pump, signal, and idler, respec-
tively. These electric field operators obey

d
E;'ﬂ(z,t) = i[ ﬁ

mho i[kj(w)z—wt]

“)

for j = p,s,i, where a;(w) is the annihilation operator for
frequency-w photons, 7;(w) is the refractive index for the
jth beam (pump, signal, or idler), and k;(w) = wn;(w)/c
is the associated wave number.

The Hamiltonian (3) yields the state at the output of the
crystal (for vacuum-input signal and idler) via

vy = 10) - [ dr' Hy(#)10), 5)

ceon%(w)S aj(w)e

for small values of the coupling constant y?. As done in
[2], we shall assume that y® is independent of frequency
over the pump bandwidth, even though this assumption
may not be satisfied in some ultrafast applications. For a
strong coherent pump pulse and in the absence of pump de-
pletion, we may replace the pump field operator in Eq. (3)
with

dw X
(+) ~ hathadt ilky(w)z—w
EpJr (z,1) —f > fp(w)e[ o], (6)

where Z,(w) is a classical complex amplitude. Because
we are interested in the fields far from the crystal, we
may expand the integration limits in Eq. (5) to run from
—o0 to +o0, Thus, the ¢ integration produces an impulse,
8(w, — w; — w;), that expresses energy conservation at
the photon level.

The biphoton state that we are seeking is the nonvacuum
part of Eq. (5). Under the preceding assumptions, this is
given by

() .

R I e
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X Op(wy, w;) los)s|wi)i, (7

where |w) = at(w) |0) is a single-photon state,

N/ WsWi
ns(ws)ni(w;)
is determined by the pump spectrum, and

sin[Ak(wy, w;)L/2]
q) A\ i =
with Ak(wy, w;) =

a(wS’ wl) =

fp(ws + wi) (8)

is the phase-matching function,
kp(ws + w;) — kg(ws) — ki(w)).
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To obtain maximal entanglement from the biphoton state
(7), we need to collapse the double integral over frequency
into a single integral. For the customary twin-beam state
|TB), this is accomplished by using a cw pump of fre-
quency w, to force a(wy, w;) * 6(w; + w; — w,) in
Eq. (7). We then obtain a TB state (1) with spectral func-
tion ¢(w) * Py (w,/2 — w,w,/2 + w). Because this
makes the common signal/idler fluorescence bandwidth,
Q) ¢, inversely proportional to L, it follows that short crys-
tals are better suited to generating broadband TB states.
For DB states, however, we will see that long crystals do
not prevent broadband entanglement generation.

Continuous-wave operation is not the only way to
obtain a maximally entangled state from (7). We
can also eliminate one of the frequency integrals by
forcing ®; to approach a delta function. The prop-
erty lim;_o[sin(xL)/x] = 75(x) allows us to write
D) (ws, w;) = 278(Ak(ws, w;)) for an infinitely long
crystal. (In practice, the nonlinear crystal will always
have a finite length L, but we will see that a high de-
gree of entanglement can be obtained using practical
values of L.) To force ®;(w,, w;) * 8(ws — w;) in the
long-crystal limit, we need to ensure that Ak(wy, ;) = 0
if and only if w; = w;, for w; + w; ranging over
the full pump bandwidth, ),. Equation (7) then re-
duces to the DB state of Eq. (2), with spectral function
$(w) = a(w,/2 + v,w,/2 + w), where w, is the
pump beam’s center frequency. Note that ¢»(w) depends
only on the pump spectrum and the refractive indexes of
the nonlinear crystal, as can be seen from Eq. (8), and that
its bandwidth is 1,/2. Moreover, the symmetry of the
phase-matching function ®; forces the signal and idler
fluorescence spectra to be identical, something that is not
generally true in ultrafast type-1I down-conversion [2].

Is it possible to satisfy the condition Ak(wy, w;) = 0
only for wy = w; over the full pump bandwidth? What
does this condition correspond to physically? By using the
first-order Taylor expansions of k; and k; around w,, /2 and
of k, around w,, we find that

ns(@p/2) + ni(wp/2)
2 ,

(10)

ny(w,) =

kj(@,/2) + ki(w,/2)
2

ensure that Ak(w,/2 + w,w,/2 + ) =0 for |w| =
Q,/2. In physical terms, the extended phase-matching
condition given by (10) and (11) assert that the index of
refraction and the inverse group velocity seen by the pump
must equal the averages of those seen by the signal and
idler. Equation (10) is the customary phase-matching con-
dition required for the generation of |TB) at frequency
degeneracy. Equation (11) is equivalent to the ‘“group
velocity matching” condition introduced in [3]. It turns
out, however, that Egs. (10) and (11) are not sufficient
for DB state generation. Because Ak(wy, ;) must vanish

k) (wp) = (an
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only for v, = w;, we must also require that k(w,/2) #
ki(®,/2). This requirement excludes type-I crystals, for
which ky(w) = k;j(w). Thus, in all that follows we will
presume type-II operation. We will discuss later the valid-
ity of truncating the Taylor series at the n = 1 terms.

The states |DB) and |TB) are duals in the following
sense. The former is a biphoton whose constituent
photons are coincident in frequency, and the latter is a
biphoton whose constituent photons are time coincident.
We now show that coincidence counting using Hong-Ou-
Mandel (HOM) and Mach-Zehnder (MZ) interferometers,
as sketched in Fig. 1, can provide experimental quan-
tum-interference signatures that distinguish between the
TB and DB biphoton states.

To understand the outcome of the two experiments
shown in Fig. 1, it is useful to start from the general state
| W) of the form (7). The coincidence rate for detection
intervals that are long compared to the reciprocal fluores-
cence bandwidth is given by (see, for example, [1,2])

d w?)

P« [ doi [ doy
27 2w

where a; and a, are the photon annihilation operators at
the two detectors and |W) is the biphoton state of the
source. Assume that the product a(wy, w)®P(w;, wy)
is symmetric in wg, w,, as is the case for both |TB) and

|IDB). By applying the beam-splitter transformations on
the operators a; and a;, we find that

[Olai(wi)ax(wa) [WHI*,  (12)

d d
Pery o [ 40 [ 202 0y, ) 0
X {1 * cos[(w; = wr)7]}. (13)

In (13), the minus signs apply to the HOM interferometer,
and the plus signs apply to the MZ interferometer.

For the TB state, we set |a(w, wy)*> * 8(w, —
w; — @) and Dy (@), w)]* = |¢p[(w2 — @1)/2]%.
Approximating  the  fluorescence  spectrum by

Source

S
Source HWP
BS
HWP S i

T
.'/—)1 I
1 )1
., BS

’ J, BS
2

FIG. 1. Quantum interference experiments to distinguish |[DB)
from |TB). The left panel shows the HOM interferometer and
the right shows the MZ interferometer. In both cases, coin-
cidence counts are measured as the relative delay, 7, between
the interferometer’s arms is varied by moving the beam split-
ter that is nearest to the detectors. The half-wave plate rotates
the idler polarization to match that of the signal because type-1I
down-conversion is assumed.

183602-3

|p(w)]? = sin’Qmrw/Qr)/[27mw/(QrL)]?, where Q=
4 /(LIk!(@,/2) = ki(w,/2)]), Bq. (13) then yields the
familiar triangular-shaped HOM coincidence dip of width
47 /Qy centered at 7 = 0 [1,2]. The |TB) coincidences
require that one photon exits from each output port of the
beam splitter. At zero relative delay, the two quantum tra-
jectories that give rise to such coincidences destructively
interfere, leading to a coincidence null [8]. The width of
this dip is ~1/€, because signal and idler wave packets
separated by many reciprocal fluorescence bandwidths
are distinguishable and, hence, do not interfere. When
the TB-state coincidence rate is evaluated for the MZ
interferometer, we obtain P, (7) < 1 + cos(w,7), ie.,
sinusoidal fringes at the pump frequency. These fringes
have an infinite extent because a perfect cw pump has an
infinite coherence time.

Now suppose that the input state in Fig. 1 is |DB),
ie. let | Dy (w), w)|* * §(w; — wy) and |a(w;, w,)|? =
|p[(w1 + w2 — @,)/2]1* in Eq. (13). In this case, the
frequency coincidence between the signal and idler pho-
tons eliminates any delay dependence in the HOM con-
figuration, reducing Eq. (13) to P_(7) = 0. In fact, the
wave functions for the two photons extend to all times
and cannot be separated: The quantum trajectories that
give rise to coincidences destructively interfere for any
delay 7. For the Mach-Zehnder arrangement, the DB
state gives P4 (7) o« 1 + exp(—Q§72/4) cos(w,7), under
the assumption of Gaussian pump spectrum |¢(w)|* =
exp[—4w?/ le,] Notice that in this case P4+ again ex-
hibits pump-frequency interference fringes, but now the
interference pattern has width 4/}, i.e., roughly equal to
the duration of a transform-limited pump pulse. Similar
interference patterns have been previously analyzed in [9].

Both the HOM and the MZ interferometers distinguish
between the states [DB) and |[TB). However, because DB
state generation requires infinite crystal length— whereas
TB state generation uses a finite-length crystal—it be-
hooves us to study what happens in the finite-L regime
when we use a pulsed pump in conjunction with our ex-
tended phase-matching conditions. The biphoton state,
|DB_.), that this system generates is entangled in frequency,
but not maximally so, i.e., measuring the frequency of the
signal photon does not exactly determine the frequency of
the idler photon. When |DB;) is measured with an HOM
interferometer, the resulting coincidence null is no longer
of unlimited extent. Indeed, the width of the coincidence
dip for |DB_) is identical to that for |TB). Thus the HOM
interferometer cannot distinguish between these two states.
The MZ interferometer, however, does distinguish between
DB ) and |TB), as the width of the former’s fringe pattern
is set by the pump bandwidth and, hence, independent of
crystal length.

More insight into the complementary behavior of |TB)
and |DB) can be gained by examining their time domain
structures. Both of these biphoton states arise from the co-
herent superposition of spatially localized, instantaneous
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signal/idler pair creations occurring throughout the length
of the nonlinear crystal. HOM and MZ interferometers use
integrating photodetectors, but reveal temporal aspects of
ITB) and |DB) via quantum interference. Suppose, how-
ever, that we use an ultrafast photodetector to measure
the arrival time of the signal photon. This measurement
specifies a definite location, along the crystal, at which
the detected signal photon was created, and implies rather
different temporal statistics for its associated idler photon
depending on whether the biphoton was |TB) or [DB). Be-
cause the TB state is produced by a cw pump, its compo-
nent photons may be created at any time. However, once its
signal photon has been detected at time 7', the accompany-
ing idler photon must be at T;, where |7, — T;| =< 47 /Q;
for our type-II system. The individual photons in the DB
state also may be created at any time, even though this
biphoton is generated by a pulsed pump. Here, the tim-
ing uncertainty is really uncertainty in the location, within
the infinitely long crystal, at which the photon pair is gen-
erated. Once again, detection of a signal photon at time
T, provides location information which strongly constrains
the arrival time for the idler photon. In particular, the
extended phase-matching conditions that produce the DB
state under pulsed pumping force (7 + T;)/2 to have a
mean value at a fixed offset (set by dispersion) from the
peak of the classical Gaussian pump pulse.

It turns out to be difficult to find a crystal satisfying
the two conditions (10) and (11). Thus, we will enforce
(10) via quasi phase matching in a periodically poled
)((2) material [10], i.e., one for which the addition of
an artificial grating results in a spatially varying non-
linear coefficient, y®(z) = x® exp(i2mwz/A), along
the propagation axis. By choosing the grating period
A to cancel the zeroth-order term in the Ak(wy, w;)
expansion, we can replace Eq. (10) with the new condi-
tion n,(w,)=[nyw,/2)+ni(w,/2)]/2—2mc/(Aw)).
This, together with Eq. (11), is satisfied by PPKTP at
a pump wavelength of 790 nm with a grating period
of 47.7 um when propagation is along the crystal’s X
axis, the pump and idler are Y polarized, and the signal
is Z polarized. It still remains for us to examine the
validity conditions for the L — % approximation to
the phase-matching function ®;(ws, w;). These can
be shown to be 27/yQ, < L < 8m/uQ?, where
y = lk,(w,) — ki(w,/2)|, and w is the maximum-
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magnitude eigenvalue of the Hessian matrix associated
with the 2D Taylor series expansion of Ak(wy, ;).
Physically, the lower limit on crystal length is set by
our need to be in the long-L regime, and the upper
limit is set by the second-order terms in the Taylor
expansion. For our PPKTP example, we have that
y =14 X 107* ps/um and u =~ 3.6 X 1077 ps?/um.
With a 170 fs (2, /27 = 3 THz) transform-limited pump
pulse, the preceding crystal-length restrictions reduce to
023 cm < L < 19.7 cm, so that a 2-cm-long crystal
will suffice. Finally, we note that polarization-entangled
DB states can be created by paralleling the procedure in
[11] for the creation of polarization-entangled TB states.
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