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The hydrodynamic equations of superfluids for a weakly interacting Bose gas are generalized to include
the effects of periodic optical potentials produced by stationary laser beams. The new equations are
characterized by a renormalized interaction coupling constant and by an effective mass accounting for
the inertia of the system along the laser direction. For large laser intensities the effective mass is directly
related to the tunneling rate between two consecutive wells. The predictions for the frequencies of the
collective modes of a condensate confined by a magnetic harmonic trap are discussed for both 1D and
2D optical lattices and compared with recent experimental data.
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The experimental realization of optical lattices [1–6]
is stimulating new perspectives in the study of coherence
phenomena in trapped Bose-Einstein condensates. A first
direct measurement of the critical Josephson current has
been recently obtained in [3] by studying the center of
mass motion of a magnetically trapped gas in the presence
of a 1D periodic optical potential. Under these conditions
the propagation of collective modes is a genuine quantum
effect produced by the tunneling through the barriers and
by the superfluid behavior associated with the coherence
of the order parameter between different wells. The ef-
fect of the optical potential is to increase the inertia of
the gas along the direction of the laser giving rise to a
reduction of the frequency of the oscillation.

The purpose of the present work is to investigate the
collective oscillations of a magnetically trapped gas in the
presence of 1D and 2D optical lattices taking into account
the effect of tunneling, the role of the mean field inter-
action, and the 3D nature of the sample. Under suitable
conditions these effects can be described by generalizing
the hydrodynamic equations of superfluids [7].

Let us assume that the gas, at T � 0, be trapped by an
external potential given by the sum of a harmonic trap of
magnetic origin Vho and of a stationary optical potential
Vopt modulated along the z axis. The resulting potential is
given by

Vext �
1
2m�v2

xx
2 1 v2

yy
2 1 v2

z z
2� 1 sER sin2qz ,

(1)

where vx, vy , vz are the frequencies of the harmonic trap,
q � 2p�l is fixed by the wavelength of the laser light
creating the stationary 1D lattice wave, ER � h̄2q2�2m
is the so-called recoil energy, and s is a dimensionless pa-
rameter providing the intensity of the laser beam. The
optical potential has periodicity d � p�q � l�2 along
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the z axis. The case of a 2D lattice will be discussed
later. In the following we will assume that the laser in-
tensity is large enough to create many separated wells
giving rise to an array of several condensates. Still, be-
cause of quantum tunneling, the overlap between the wave
functions of two consecutive wells can be sufficient to en-
sure full coherence. In this case one is allowed to use
the Gross-Pitaevskii (GP) theory for the order parame-
ter to study both the equilibrium and the dynamic behav-
ior of the system at zero temperature [8]. Eventually, if
the tunneling becomes too small, the fluctuations of the
relative phase between the condensates will destroy the
coherence of the sample giving rise to new quantum con-
figurations associated with the transition to a Mott insu-
lator phase [2,6].

In the presence of coherence it is natural to make the
ansatz

C�r� �
X
k

Ck�x, y�fk�z�eiSk�x,y� (2)

for the order parameter in terms of a sum of many conden-
sate wave functions relative to each well. Here Sk�x, y�
is the phase of the k component of the order parameter,
while Ck and fk are real functions. We will make the
further periodicity assumption fk�z� � f0�z 2 kd� where
f0 is localized at the origin. The above assumptions for
C and fk are justified for relatively large values of s
where the interwell barriers are significantly higher than
the chemical potential. In this case the condensate wave
functions of different sites are well separated (tight bind-
ing approximation).

Using the ansatz (2) for the order parameter one finds
the following result for the mean field expectation value of
the effective Hamiltonian H �

P
j�p

2
j �2m 1 Vext�rj�� 1

g
P
j,k d�rj 2 rk�:
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2 d
X
k

Z
dx dyCkCk11 cos�Sk 2 Sk11� , (3)
where in the two-body and in the magnetic interaction
terms as well as in the radial kinetic energy we have ig-
nored the overlap contributions arising from different
wells. In the evaluation of the axial kinetic energy and of
the optical potential term we have instead kept also the
overlap terms originating from consecutive wells. These
are proportional to the quantity

d � 22
Z
dz

∑
h̄2

2m
≠zf0�z�≠zf0�z 2 d�

1 f0�z�f0�z 2 d�Vopt

∏
, (4)

related to the tunneling rate and responsible for the occur-
rence of Josephson effects.

By setting Sk � 0 (ground-state configuration), the
variation of E with respect to f0 yields the equation

∑
2
h̄2

2m
≠2

≠z2 1 sER sin2qz

∏
f0�z� � ´0f0�z� , (5)

where ´0 is introduced to ensure the normalization condi-

tion
Rd�2

2d�2 dz f
2
0 � 1 which implies that the functions Ck

are normalized to the number of atoms Nk occupying each
site:

R
C

2
k dx dy � Nk. In Eq. (5) we have ignored the

contribution arising from the two-body interaction. Esti-
mates of [9] show that this is a good approximation al-
ready at moderately large s. Since in the following we are
interested in the low energy excitations, we will keep the
function f0 equal to the ground-state solution of (5).

In order to discuss the macroscopic properties of the sys-
tem, including its low energy dynamics, it is convenient
to transform the discretized formalism described above
into the one of continuum variables. This is obtained
through the replacement

P
k ! �1�d�

R
dz in the various

terms of the energy. Through such a procedure one natu-
rally introduces a smoothed or “macroscopic” density de-
fined by

nM �x, y, z� � �1�d�C2
k�x, y� (6)

with z � dk, and a smoothed phase S �Sk ! S�x, y, z��.
By applying the smoothing procedure to Eq. (3) we ob-

tain the following macroscopic expression for the energy
functional

E �
Z
dV nM

∑
g̃nM

2
1 Vho

1
h̄2

2m
�≠r�

S�2 2 d cos�d≠zS�
∏

, (7)
where we have introduced the renormalized coupling con-
stant g̃ � gd

R
f4

0 dz, we have neglected quantum pressure
terms originating from the radial term in the kinetic energy,
and we have set CkCk11 	 C

2
k � dnM . We have also

omitted some constant terms [first two terms in Eq. (3)]
which do not depend on nM or on S.

With respect to the functional characterizing a trapped
Bose gas in the absence of optical confinement, one notices
two important differences: first, the interaction coupling
constant is renormalized due to the presence of the optical
lattice. This is the result of the local compression of the gas
produced by the tight optical confinement which increases
the repulsive effect of the interactions. Second, the kinetic
energy term along the z direction has no longer the clas-
sical quadratic form as in the radial direction, but exhibits
a periodic dependence on the gradient of the phase. By
expanding this term for small gradients, which is the case
in the study of small amplitude oscillations, one derives a
quadratic term of the form �h̄2�2m��

R
dV nM�≠zS�2 char-

acterized by the effective mass

m
m�

�
mdd2

h̄2 �
d

ER

p2

2
, (8)

where d is defined by Eq. (4). Notice that within the em-
ployed approximation the value of d, and hence of m�,
does not depend on the number of atoms, nor on the mean
field interaction.

The equilibrium density profile, obtained by minimizing
Eq. (7) with S � 0 has the typical form of an inverted
parabola [10]

n0
M � �m 2

1
2m�v2

xx
2 1 v2

yy
2 1 vzz

2���g̃ , (9)

which conserves the aspect ratio of the original magnetic
trapping. The size of the condensate has instead increased
since g̃ . g. For large s the increase of the coupling
constant can be large (g̃ 	 s1�4 [9]). However, since the
radius of the sample scales like the 1

5 th power of g̃, the
resulting increase in the size of the system is not very
spectacular (for s � 15 we find an increase of the size by
	20% for the experimental setting of [3]).

The functional (7) can be used to carry out dynamic
calculations. In this case one needs the action A �R
dt ��H� 2 ih̄� ≠

≠t ��, with the second term given by
ih̄��≠�≠t�� � 2

R
dV h̄nM �S. The resulting equations of

motion are obtained by imposing the stationarity condition
on the action with respect to arbitrary variations of the
density nM and of the phase S
180404-2
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�nM 1
h̄
m

≠r�
�nM≠r�

S� 1
dd
h̄

≠z �nM sin�d≠zS�� � 0 ,

(10)

h̄ �S 1 g̃nM 1 Vho 1
h̄2

2m
�≠r�

S�2 2 d cos�d≠zS� � 0 .

(11)

In particular, at equilibrium these equations reproduce
result (9) for the equilibrium density. Furthermore,
Josephson-type oscillations are among those captured by
Eqs. (10) and (11). To see this, consider the case of a
uniform gradient of the phase along z, ≠zS � PZ�t��h̄,
where PZ is a time-dependent parameter. From Eqs. (10)
and (11) one can then derive equations of motion for
the center of mass Z�t� �

R
dV znm�t��N and for the

conjugate momentum variable PZ [3,11]

h̄ �Z 2 dd sin

∑
d
PZ
h̄

∏
� 0 , (12)

�PZ 1 mv2
z Z � 0 , (13)

which have the typical Josephson form.
In the limit of small oscillations the solutions of

Eqs. (10) and (11) have the form n � n0
M 1 dn�r�eivt

with dn obeying the hydrodynamic equations:

2v2dn � ≠r�

∑
m 2 Vho

m
≠r�

dn

∏
1 ≠z

∑
m 2 Vho

m�
≠zdn

∏
,

(14)

where m � g̃n0
M �0� is the chemical potential of the sample

and n0
M �0� is the equilibrium density (9) evaluated at the

center. Equations (14) are applicable to systems whose
size is large compared to the oscillator lengths of the mag-
netic trap (Thomas-Fermi approximation) and for the low
energy excitations with h̄v ø m. In the absence of mag-
netic trapping one finds phonons propagating at the veloc-
ity c �

p
g̃n0

M�m�, in agreement with the result obtained
in [12] for a 1D array of Josephson junctions. In the pres-
ence of harmonic trapping the discretized frequencies of
the time-dependent solutions of (14) do not depend on the
value of the coupling constant. By applying the transfor-
mation z !

p
m��m z, one actually finds that the new fre-

quencies are simply obtained from the results of [7] by
replacing

vz ! vz

p
m�m� . (15)

For an elongated trap �vx � vy � v� ¿ vz� the lowest
solutions are given by the center-of-mass motion vD �p
m�m� vz and by the quadrupole mode vQ �

p
5�2 3p

m�m� vz. The center-of-mass frequency coincides with
the value obtained from Eqs. (12) and (13) in the limit
of small oscillations, in agreement with the result of [3]
obtained in the tight binding limit starting from the 1D
discrete nonlinear Schrödinger equation. Concerning the
quadrupole frequency, we note that the occurrence of the
factor

p
5�2 is a nontrivial consequence of the mean field

interaction predicted by the hydrodynamic theory of su-
180404-3
perfluids in the presence of harmonic trapping [7]. In ad-
dition to the low-lying axial motion, the system exhibits
radial oscillations at high frequency, of the order of v�.
The most important ones are the transverse breathing and
quadrupole oscillations occurring at v � 2v� and v �p

2 v�, respectively. For elongated traps the frequencies
of these modes should not be affected by the optical poten-
tial. Different scenarios are obtained for disk-shaped traps
�vz ¿ v��. The above results apply to the linear regime
of small oscillations. Equations (12) and (13) show that in
the case of center-of-mass oscillations, the linearity condi-
tion is achieved for initial displacements Dx of the trap sat-
isfying Dx ø

p
2d�mv2

z , a condition that becomes more
and more severe as the laser intensity increases. For larger
initial displacements the oscillation is described by the
pendulum equations. For very large amplitudes the mo-
tion is, however, dynamically unstable [11].

From the previous discussion it emerges that the effec-
tive mass is the crucial parameter needed to predict the
value of the small amplitude collective frequencies. An
estimate of m�m� can be made by neglecting the magnetic
trapping as well as the role of the mean field interaction.
Within this approximation the effective mass is easily
obtained from the excitation spectrum of the Schrödinger
equation for the 1D Hamiltonian H � 2�h̄2�2m�≠2�
≠z2 1 sER sin2qz, avoiding the explicit determination
of the tunneling parameter (4). One looks for solutions of
the form eipz� h̄fp�z� where p is the quasimomentum of
the atom and fp�z� is a periodic function of period d. The
resulting dispersion law ´�p� provides, for small p, the ef-
fective mass according to the identification ´�p� � ´0 1

p2�2m�. The value of m�m�, which turns out to be a
universal function of the intensity parameter s, has been
evaluated for a wide range of values of s (see Fig. 1).
These results for m� can be used to estimate the actual
value of the collective frequencies. The method described
here to calculate m� is expected to be reliable not only
for very large laser intensities s when the tight binding
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FIG. 1. Effective mass as a function of the laser intensity s
[see Eq. (1)] calculated neglecting the effects of interaction and
harmonic trapping.
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FIG. 2. Frequency of the center-of-mass motion for a conden-
sate trapped by the combined magnetic and optical potential (1)
as a function of the laser intensity. The circles and triangles are,
respectively, the experimental and theoretical data of [3]. The
triangles have been obtained by evaluating the tunneling rate (4)
within a Gaussian approximation for the order parameter in each
well [3]. The solid line refers to our theoretical prediction (15).

approximation applies and the effective mass can be
expressed in terms of the tunneling rate [see Eqs. (8) and
(4)], but also for smaller values of s. Of course, for very
small laser intensities, as in the experiment [13], the de-
termination of m� requires the inclusion of the mean field
interaction and of the magnetic trapping through the ex-
plicit solution of the GP equation.

In Fig. 2 we compare our predictions for the frequen-
cies of the center-of-mass motion with the recent experi-
mental data obtained in [3]. The comparison reveals good
agreement with the experiments. Our results also agree
well with those obtained from the numerical solution of
the time-dependent GP equation [11].

The above formalism is naturally generalized to include
a 2D optical lattice where the optical potential is Vopt �
sER sin2qx 1 sER sin2qy. The actual potential now gen-
erates an array of 1D condensates which has already been
the object of experimental studies [4]. For a 2D lattice the
ansatz for the order parameter is [14]

F�r� �
X
kx ,ky

Ckx ,ky �z�fkx ,ky �x, y�eiSkx ,ky �z�. (16)

In the Thomas-Fermi limit the ground-state smoothed den-
sity nM � C

2
kx ,ky�d

2 still has the familiar form n0
M �

�m 2 Vho��g̃ with the redefined coupling constant g̃ �
g�d

R
dx f4

0 �2, where f0 is still given by the solution of
Eq. (5) and we have used the same approximations as in
the 1D case.

Also with regard to dynamics, one can proceed as for
the 1D lattice. One finds that the equations of motions,
after linearization, take the form

d̈n � ≠z

∑
m 2 Vho

m
≠zdn

∏
1 ≠r�

∑
m 2 Vho

m�
≠r�

dn

∏
.

(17)
The frequencies of the low energy collective modes are
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then obtained from those in the absence of the lattice
[7] by simply replacing vx !

p
m�m� vx and vy !p

m�m� vy . For large laser intensities the value of m� co-
incides with the one calculated for the 1D array. If vz ¿

vx

p
m�m� , vy

p
m�m�, the lowest energy solutions in-

volve the motion in the x-y plane. The oscillations in the
z direction are instead fixed by the value of vz . These
include the center-of-mass motion �v � vz� and the low-
est compression mode �v �

p
3 vz� [7,8]. The frequency

v �
p

3 vz coincides with the value obtained by directly
applying the hydrodynamic theory to 1D systems [15,16]
and reveals the 1D nature of the tubes generated by the
2D lattice. If the radial trapping generated by the lattice
becomes too strong, the motion along the tubes can no
longer be described by the mean field equations and one
jumps into more correlated 1D regimes [17].
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