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We consider the condensate wave function of a rapidly rotating two-component Bose gas with an
equal number of particles in each component. If the interactions between like and unlike species are
very similar (as occurs for two hyperfine states of 87Rb or 23Na) we find that the two components
contain identical rectangular vortex lattices, where the unit cell has an aspect ratio of

p
3, and one lattice

is displaced to the center of the unit cell of the other. Our results are based on an exact evaluation of
the vortex lattice energy in the large angular momentum (or quantum Hall) regime.
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Experiments on rotating Bose gases have progressed
rapidly in the last two years. Soon after the pioneer work at
JILA [1] and ENS [2], the MIT group created a vortex lat-
tice with as many as 160 vortices [3]. Recently, the JILA
group has invented an ingenious method to increase the
angular momentum of a condensate by performing evapo-
rative cooling on a rotating normal cloud [4]. In this pro-
cess, the system spins faster and faster as it is cooled, while
remaining close to equilibrium. With such rapid progress,
one expects that equilibrium Bose gases with even larger
angular momenta may be produced in the near future.

At present, most experiments on vortex lattices are per-
formed in single component Bose systems. It is natural
to ask what happens in two-component Bose gases, such
as those made up of two hyperfine spin states of the same
atom. The vortex lattices in such systems are bound to be
more intricate than those in single component condensates,
as the vortices in different components can move relative
to one another to minimize the energy. The purpose of
this paper is to study the vortex lattices of two-component
systems with a large number of vortices, in what we call
the “mean field quantum Hall regime.” This is the regime
where mean field theory remains valid so that each com-
ponent (labeled by an index “i,” i � 1, 2) is characterized
by a condensate wave function Ci; yet the angular mo-
mentum of the system is so high that Ci is made up of
the orbitals in the lowest Landau level in the plane perpen-
dicular to the rotation axis. It has been shown recently [5]
that this regime will emerge in a three dimensional Bose
gas at sufficiently high angular momenta [6]. We focus
on this regime because the wave function in this limit ac-
quires an analytic structure which allows exact evaluation
of the energy of a vortex lattice. As a result, it is possible
to scan through a wide range of lattice structures which
would be impractical for numerical calculations because of
the time and the accuracy required. Although not directly
applicable to current experiments on vortex lattices (which
are performed at lower angular momenta), the physics of
the mean field quantum Hall regime is still quite relevant
as the vortex lattices in these two regimes are connected
continuously to each other.
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One special feature of the majority of two-component
gases so far studied (notably mixtures of hyperfine states
of 87Rb [7] in magnetic traps or 23Na [8] in optical traps)
is that the interactions between like species (denoted g1
and g2) and unlike species (denoted g12) are within a few
percent of each other. Thus, if there are an equal num-
ber of bosons in each component, and each feels the same
trapping potential, then the two components will be the
same size and contain the same density of vortices. In this
case, one expects that each component will contain identi-
cal vortex lattices, with one lattice displaced relative to the
other. While we are mainly interested in the experimen-
tally relevant cases, where g1 � g2 � g12, considerable
insight is gained by studying vortex lattices as a function
of the interactions. Considering the case g1 � g2 fi g12,
we find a wide range of vortex lattice structures as the
parameter a � g12�pg1g2 is varied. The vortex lattice
has a fixed structure over certain intervals of a, while
it varies continuously in others. Near the isotropic point
g1 � g2 � g12 each component contains identical rectan-
gular lattices, with one displaced to the center of the unit
cell of the other. The aspect ratio of the unit cell changes
with a, and is

p
3 when a � 1.

The mean field quantum Hall regime.— The condensate
wave functions C1 and C2 of a two-component rotating
Bose gas are determined by minimizing the grand poten-
tial K � E 2 VLz 2 m1N1 2 m2N2, where E is the en-
ergy of the system, V is the rotational frequency, Lz is
the angular momentum along z, and mi �i � 1, 2� are the
chemical potentials fixing the number of bosons N1 and
N2 in each component. For simplicity, we assume identi-
cal trapping potentials for each component. We consider a
cigar-shaped trap with the symmetry axis z coinciding with
the axis of rotation. As discussed in [5], the slow varia-
tion of the trapping potential along z allows one to apply a
Thomas-Fermi approximation for the z dependence of Ci

and write K as
R

dz dr K�r, z�,

K�r, z� �
X

i�1,2

C�
i �h 2 mi �z��Ci 1 V , (1)
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h �
1

2M

µ
h̄

i
= 2 MVẑ 3 r

∂2

1
1
2

M�v2
� 2 V2�r2,

(2)

V �
1
2 g1jC1j

4 1
1
2g2jC2j

4 1 g12jC1j
2jC2j

2, (3)

with r � �x, y�, mi�z� � mi 2
1
2Mv2

z z2, gi �
4p h̄2ai�M, �i � 1, 2�, and g12 � 4p h̄2a12�M, where ai

and aij are the s-wave scattering lengths between like and
unlike bosons, respectively. As z is treated as a parame-
ter, it is convenient to write Ci �

p
ni�z� Fi�r; z�, withR

jFi�r; z�j2 d2r � 1. The number constraint
R

dr dz 3

jCj2 � Ni becomes
R

ni�z� dz � Ni .
As V approaches v�, the wave functions Fi are made

up of the orbitals um�r� of the lowest Landau level in the
xy plane, Fi�r, z� �

P`
m�0 cm�z�um�r�, where um�r� �

�2pm!�21�2��x 1 iy��d�me2r2�2d2
, and d �

p
h̄�Mv�.

The potential K then becomes

K �
X

i�1,2

∑
h̄�v� 2 V�

�r2�i

d2 2 mi�z� 1 h̄v�

∏

3 ni�z� 1 V , (4)

where �r2�i �
R

r2jFij
2 d2r, and

V �
Z

d2r

"
1
2

X
i�1,2

gin
2
i jFi j

4 1 g12n1n2jF1j
2jF2j

2

#
.

(5)

As shown in Ref. [5], wave functions in the lowest Landau
level (not normalized) can be written as

f�r� � l
Y
a

�w 2 aa�e2r2�2d2

, w � x 1 iy , (6)

where l is an arbitrary constant and 	aa
 are the zeros of
f. If the zeros form an infinite lattice with unit cell size
yc, it is shown in [5] that jfj2 is a product of a Gaussian
and a function periodic under lattice translation, i.e.,

jfj2 � e2r2�s2

g�r�, g�r� � g�r 1 R� , (7)

where R � n1B1 1 n2B2, ni are integers, and B1, B2 are
the basis vectors of the lattice. The width s reflects the
number of vortices of the system. It is given by

s22 � d22 2 py21
c . (8)

The periodicity of g�r� implies g�r� � y21
c

P
K gKeiK?r,

where 	K
 are the reciprocal lattice vectors.
In the following, we consider a two-component Bose

gas with equal particle numbers and trapping potentials,
and with interactions g1 � g2 fi g12. If g1 � g2, the
two components are identical and we expect each to con-
tain identical vortex lattices, translated with respect to one
another. Sufficiently small differences in g1 2 g2 should
not change this structure [though changes may occur in the
density profiles ni�z�, the parameters of the lattice, and the
relative displacement r0]. This structure persists because,
even when g1 fi g2, the two components contain equal
vorticity, hence an equal density of vortices. The potential
180403-2
energy is minimized by interlacing the two lattices; if the
vortex lattice in one component were to deform, the other
has to follow to keep the interaction energy at a minimum.
We therefore consider normalized condensates F1 and F2
with densities

jF1j
2 � �ps2�21

X
K

g̃KeiK?re2r2�s2

, (9)

jF2j
2 � �ps2�21

X
K

g̃KeiK?�r2r0�e2r2�s2

, (10)

g̃K � gK

, √X
K0

gK0e2s2K02�4

!
. (11)

The wave function is described by variational parameters
ni�z�, s2, the basis vectors Bi (which determine the unit
cell size yc), and the relative displacement r0.

By integrating Eqs. (9) and (10), one sees that up
to terms of relative order yc�s2 the cloud’s radius is
�r2�1 � �r2�2 � s2. Defining the quantities I and I12
as

R
jFi j

4 d2r � I��ps2� and
R
jF1j

2jF2j
2 d2r � I12�

�ps2�, we have

I �
X

K,K0

g̃Kg̃K0e2s2jK1K0j2�4, (12)

I12 �
X
K

g̃Kg̃K0e2iK0?r0e2s2jK1K0j2�4, (13)

and the potential K takes the form

K � 2�m�z� 2 h̄v� 2 h̄�v� 2 V� �s2�d2��
3 �n1 1 n2� 1 �d2�2s2�
3 �n2

1g1I 1 n2
2g2I 1 2n1n2g12I12� . (14)

Explicit expressions for the coefficients gK are derived
by introducing the complex representation for the basis
vectors, bi � �x̂ 1 iŷ� ? Bi . The area of the unit cell is
then yc � i�b�

1b2 2 b�
2b1��2. If we orient the lattice so

that b1 is real, i.e., B1 � b1x̂, B2 � b1�ux̂ 1 yŷ�, we
then have

b2 � b1�u 1 iy�, yc � b2
1y . (15)

In the Appendix, we show that a function F in the low-
est Landau level describing a regular vortex lattice con-
tained in a cylindrically symmetric cloud will have the
form f�r� � f�w�e2r2�2d2

, with w � x 1 iy, and

f�w� � u�z , t�epw2�2yc , (16)

where z � w�b1 � �x 1 iy��b1, t � u 1 iy � b2�b1,
and u is the Jacobi theta function defined as

u�z , t� �
1
i

X̀
n�2`

�21�neipt�n11�2�2

e2piz �n11�2�. (17)

The density jfj2 is therefore of the form Eq. (7), with s

given in Eq. (8), and

g�r� � ju�z , t� exp�2py2�yc�j2. (18)
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The Jacobi theta function has the quasiperiodic properties

u�z 1 1, t� � u�z , t� , (19)

u�z 1 t, t� � 2e2ip�t12z �u�z , t� , (20)

which implies the periodic property g�r� � g�r 1 R�.
The Fourier coefficients of g�r� are

gK � �21�m11m21m1m2e2yc jKj2�8p
p

yc�2 , (21)

where K � m1K1 1 m2K2, and Ki are the basis vec-
tor of the reciprocal lattice, K1 � �2p�yc�B2 3 ẑ, K2 �
�2p�yc�ẑ 3 B1, and

ycK2 � �2p�2y21��ym1�2 1 �m2 2 um1�2� . (22)

Since we work in the limit of large vortex number, the
size of the cloud is much larger than the unit cell, i.e.,
ps2�yc ¿ 1. We can therefore ignore all K 1 K0 fi 0
terms in Eqs. (12) and (13), since s2K2 . ps2�yc. We
then have

I �
X
K

Ç
gK

g0

Ç2
, I12 �

X
K

Ç
gK

g0

Ç2
cosK ? r0 , (23)

where gK is given by Eq. (21) and the K sum is over
the integers m1, m2. Since the expressions of I and I12 in
Eq. (23) are independent of s2, the minimization of K in
Eq. (14) with respect to s2 and ni becomes very simple.
The optimum s2, n � �n1, n2�, and K are given by

s2 � d2�m�z� 2 h̄v����3h̄�v� 2 V�� , (24)

n�z� � �2�3� �s2�d2� �m�z� 2 h̄v��G21 ? 1 , (25)

K � 2�1�3� �m�z� 2 h̄v��1 ? n�z� , (26)

G �

√
g1I g12I12

g12I12 g2I

!
, 1 �

√
1
1

!
. (27)

It is clear from Eqs. (24) through (27) that the solution
for the case where g1 2 g2 ø jg1 1 g2j is very close to
that of g1 � g2. The lattice shape (parametrized by r0, u,
and y) enters the grand potential only through the factor
1 ? G21 ? 1. When g1 � g2 this term is inversely propor-
tional to J � I 1 aI12, and the most favorable lattice is
the one that minimizes J.

Summary of results.— It is interesting to compare the
two-component case with the single-component case. In
the latter system, energy minimization reduces to mini-
mizing I. The only local minimum is the triangular lattice,
where I � 1.1596; the square lattice is a saddle point with
I � 1.1803. The minute difference between these values
of I makes a simple numerical minimization of (1) chal-
lenging and illustrates the utility of the analytic scheme
used here.

For a two-component Bose gas, the most favorable lat-
tice minimizes I 1 aI12. In the minimization it is conve-
nient to measure lengths in units of the basis vector B1 �
b1x̂, and write complex representation of B2 and r0 as t �
u 1 iy � jtjeih and r0 � a 1 bt, respectively. The
phase diagram of the vortex lattice as a function of the ratio
a � g12�g is shown in Figs. 1 and 2. The major features
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FIG. 1. Phases of the two-component lattice: black and grey
dots represent vortices of each of the two fluids. The panels
(a) through (e) show the vortex structure in each of the phases
described in the text. The final panel depicts the geometry of the
lattices; the black and grey dots, respectively, occupy positions
in the complex plane 	m 1 nt
 and 	�a 1 m� 1 �b 1 n�t
,
where m, n are integers. All minimal-energy configurations have
a � b.

are (a) a , 0: In this region the vortices of the two com-
ponents coincide with each other �a � b � 0� to form a
triangular lattice �t � eip�3�. (b) 0 , a , 0.172: The
vortex lattice in each component remains triangular. How-
ever, r0 undergoes a first order change so that one lattice
is displaced to the center of the triangle of the other �a �
b � 1�3�. The lattice type (characterized by t � eip�3)

FIG. 2. The parameters of the vortex lattice as a function of
a � g12�pg1g2, a measure of the importance of interactions
between unlike atoms. The phases, labeled (a) through (e) are
illustrated in Fig. 1 along with the parameters t � jtjeih and
a. Solid and dashed vertical lines, respectively, denote first and
second order phase transitions. The open circle on the horizontal
axis indicates a � 1.
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remains constant within this interval. (c) 0.172 , a ,

0.373: At a � 0.172, r0 jumps from the center of the tri-
angle (i.e., half of the unit cell) to the center of the (rhom-
bic) unit cell �a � b � 1�2�. The angle h jumps from
60± to 67.95± at a � 0.172, and increases continuously to
90± as a increases to 0.372. As a result, the lattice type
is no longer fixed and the unit cell is a rhombus. The
modulus of t, however, remains fixed across this region.
(d) 0.373 , a , 0.926: The two lattices are “mode-
locked” into a centered square structure throughout the en-
tire interval �t � i, a � b � 1�2�. (e) 0.926 , a: The
lattice type again varies continuously with interaction a.
Each component’s vortex lattice has a rectangular unit cell
�h � p�2� whose aspect ratio jtj increases with a. Both
87Rb and 23Na have interaction parameters within this
range. At a � 1 �g1 � g2 � g12 � g�, the aspect ratio isp

3. If one ignores the difference between the components,
the combined lattice is triangular, as is expected.

It is interesting to note that in the absence of rotation,
the two components change from miscible to immiscible
when a increase beyond 1. No such change, however,
happens at a � 1 in the high angular momentum limit.
This qualitative difference in behavior occurs because the
presence of a vortex lattice naturally modulates the density
of each component, with the high density regions of one
fluid coincident with the low density regions of the other.
Thus the system is effectively phase separated whenever
staggered vortex lattices are present, even for a , 1. In
particular, the vortex lattice near a � 1 (above or below)
is made up of alternating rows of vortices of each compo-
nent (see Fig. 1), and the system therefore contains stripes
in which one component has a high density and the other
component has a very low density. As a increases, the
stripes become more pronounced.

Final remarks.—The diversity of the vortex lattice
structures in the two-component Bose gas has once again
demonstrated the rich properties of these systems. Our
calculation, based on exact evaluation of the vortex
energy, assumes a perfect lattice. Considering the long
relaxation times in clouds of dilute atoms, one might see
more complicated structures, where patches of vortex
domains are separated by defects or grain boundaries.
Nevertheless, the underlying equilibrium structure should
be reflected within each vortex domain.

So far, we have discussed only two-component systems
with simple interpenetrating Bravais lattices. Our method
is more general in that it allows the exact evaluation of
the energy of an arbitrary regular lattice (with arbitrarily
complicated unit cell decoration). Such structures may
be favored when the particles in each component have
different numbers, trapping potentials, or masses (as in the
case of 23Na-87Rb mixtures).

This work is supported by NASA Grants No. NAG8-
1441 and No. NAG8-1765, and by NSF Grants No. DMR-
0109255 and No. DMR-0071630.

Appendix.—The general form of a vortex lattice in the
lowest Landau level is C�x, y� � f�w�e2r2�2d2

, where
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w � x 1 iy and f is an entire function whose zeros form
a regular lattice 	b � nb1 1 n2b2
, where ni are inte-
gers, and b1 and b2 are the complex basis vectors, �b2 �
b1�u 1 iy��. Since the Jacobi theta function u��x 1

iy��b1,u 1 iy� is an entire function with exactly these
zeros, we have f�w� � u�z ,t �h�z �, where z � �x 1

iy��b1 � x̄ 1 iȳ, t � u 1 iy � b2�b1, and h�z � is an
entire function without zeros. To ensure the normalizabil-
ity of C, this function can be only of the form h�z � �
exp�c1z 1 c2z2�. It is straightforward to show that

ju�z , t�j2 �
X
m

�21�me2pimx̄e2pym2�2Lm , (28)

Lm �
1
2

X
m0

�1 2 eip�m1m0��e�ipum22pȳ2pym0�2�m0

(29)

�

s
2
y

X
k

�21��m11�ke�2p�k1um12iȳ �2�2y�, (30)

the last line following from the Poisson summation for-
mula. We thus have

ju�z , t�j2 �

"
1
yc

X
K

gKeiK?r

#
e2py2�yc , (31)

where r � xx̂ 1 yŷ, K � �2pmx̂ 2 2p�n 1 um��
yŷ��b1, and gK is given by (21). The density of the sys-
tem is then jC�r�j2 � ju�z , t�j2jec1z1c2z 2

j2e2r2�d2
. For a

vortex lattice with inversion symmetry about the origin,
r � 0, we have c1 � 0. In addition, if the cloud’s enve-
lope is cylindrically symmetric, we have c2 � p��2yc�,
which gives Eqs. (7), (8), (16), and (18). Similar ap-
proaches have been used by Tkachenko [9] and Abriko-
sov [10] in their respective studies of 4He and type two
superconductors.
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