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Comment on “Feynman Effective Classical Potential
in the Schrödinger Formulation”

In a recent Letter [1] the zero temperature limit of the
effective classical potential (ECP) is obtained through the
minimization of �cjĤjc� under the constraint �cjx̂jc� �
x, and those states that realize this minimization are called
minimal energy wave packets (MEWP). The authors ap-
proximate the time evolution of a wave packet, initially
in a MEWP configuration, with the classical motion of a
particle in the ECP. To build up their approximation, how-
ever, they incorrectly resort to the Ehrenfest classical limit.
Below, we point out the proper variational principle for
the effective action (EA) which indeed underlies the actu-
ally highly nonclassical approximation considered in [1]
(where the authors describe the tunneling of a particle in a
double well potential), and we show the difference with a
truly Ehrenfest-like motion. Once the connection with the
EA is established, we can not only correctly understand the
approximation in [1] as the lowest order approximation of
a systematic expansion, but we can also improve on it. In
addition we note that the zero temperature ECP is nothing
but the well known quantum mechanical effective potential
(EP) and that the minimization procedure used in [1] was
actually established long ago and can be found in many
textbooks [2].

The example studied in [1] is the tunneling in a double
well Vdp�x� � 2x2�2 1 lx4�24. The dynamical evolu-
tion of a wave packet (WP) in Vdp can be analyzed [3] via
the EA, Seff�x�t��, whose static limit is the EP, Veff�x�,
i.e., the ECP of [1]. A variational principle that allows
one to determine the EA as the stationary, time integrated
matrix element of i≠t 2 Ĥ between time dependent states
subject to a double constraint has been derived in [4]. Re-
markably, when restricting oneself to the diagonal matrix
element of i≠t 2 Ĥ in a state c, the argument x�t� of the
functional Seff�x�t�� has the meaning of the time depen-
dent coordinate expectation value in the state c [4]. Let us
consider the derivative expansion of the EA, Seff�x�t�� �R

dt �2Veff�x� 1 Zeff�x� �≠t x�2�2 1 Yeff�x� �≠tx�4�24 1

. . .�. One immediately realizes that in the lowest order
approximation, i.e., Zeff�x� � 1, Yeff�x� � · · · � 0, the
dynamical evolution of the WP is approximated by Veff,
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FIG. 1. Phase space trajectories with l � 6 in Vdp.
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FIG. 2. Phase space trajectories with l � 0.1 in Vdp .

which is what has been done in [1]. This provides the only
correct framework to interpret the results in [1]. This is
nothing but the lowest order of a systematic approximation
and we know how to improve on this result. We make
use of the Wilsonian action renormalization group flow
equation [5] to determine Veff�x� and Zeff�x� by solving
numerically two coupled partial differential equations [6].
In Fig. 1, a x-y�� �x� diagram for the WP time evolution
(dotted line) with l � 6 is compared to the ones relative
to the functions x�t� which extremize Seff either with
Zeff � 1 as in [1] (dashed line) or including Zeff�x� (solid
line). Our WP at t � 0 is a Gaussian centered at x � 0.7
(for comparison with [1]) whose width is fixed by the
curvature V 00

eff�x � 0.7�. Note in Fig. 1 the improvement
of some percent that is obtained when Zeff�x� is included.

To conclude we stress here that the Ehrenfest theorem
establishes, under “classical” conditions which do not in-
clude the ones considered in [1], the equation of motion
of x�t� in terms of Vdp, not of Veff. As a good example of
truly Ehrenfest classical motion, we present here the mo-
tion of a WP in a deep double well potential (l � 0.1),
around one of the classical minima. The motion of the
mean position of the WP (solid line in Fig. 2) is reason-
ably well approximated by the Ehrenfest motion of x�t�
(dashed line).
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