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Randomized search algorithms for hard combinatorial problems exhibit a large variability of perfor-
mances. We study the different types of rare events which occur in such out-of-equilibrium stochastic
processes and we show how they cooperate in determining the final distribution of running times. As a
by-product of our analysis we show how search algorithms are optimized by random restarts.
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Recent years have witnessed an increasing convergence
of research themes coming from out-of-equilibrium statis-
tical physics and computer science [1–3]. For instance,
giving a “static” characterization of systems displaying an
extremely slow dynamics is a central problem both in com-
puter science [4] and in spin glass theory [5]. The results
in these fields are strongly focused on the typical proper-
ties of large random systems. This approach is justified as
long as the quantities of interest concentrate in probabil-
ity around some typical value when the size diverges (the
so-called self-averaging property).

In this Letter we provide an analytical and numerical
study of different types of “rare events” which occur in the
time evolution of randomized search algorithms for hard
optimization problems. As a by-product, we find a general
picture for understanding and optimizing the introduction
of restarts in randomized search algorithms [6].

It is a well-known fact (and a basic problem for both
theoretical and applied computer science) that the so called
NP-complete [7] combinatorial decision problems might
require computational resources that grow exponentially
with the number of variables N needed for their encod-
ing. However, combinatorial search methods often exhibit
remarkable variability in performance: it is not uncom-
mon to observe a combinatorial method “hang” on a given
instance of a problem, whereas a different heuristic algo-
rithm, or even just another stochastic run, solves the in-
stance quickly.

With the aim of clarifying such behavior, in recent
years there has been intense research activity on randomly
generated hard combinatorial problems which has lead
to the identification of nontrivial problem ensembles [8].
Particularly representative and widely studied examples
are satisfiability of random Boolean expressions, vertex
coloring and covering of random graphs, and number
partitioning [1].

This type of setting gives us much more freedom than in
a standard physical experiment. Indeed an algorithm can
be run an exponential number of times with each run in
turn possibly taking exponential time. In such a situation
rare events may have dramatic effects and completely de-
termine the total computational time and the outcome of
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such random-restart experiments. We will show that there
exist distinct sources of hardness fluctuations, static (i.e.,
intrinsic) and dynamic (algorithm dependent), which ac-
count for the variability of resolutions times.

While our approach is general and applies to a wide class
of problems, in what follows we focus on the (NP com-
plete) vertex cover (VC) problem on random graphs. The
choice of VC is dictated mainly by its relative simplicity.
Moreover, we will study random restart experiments for
ensembles of problems which are typically solvable.

In combinatorial decision problems one has to assign
the values of a (large) set of variables in such a way as
to satisfy a set of constraints. For instance, in VC one
is given an undirected graph G � �V , E� with N vertices
i [ V � �1, 2, . . . , N � and L edges �i, j� [ E , V 3 V .
The problem consists in distributing X covering marks over
the vertices in such a way that every edge of the graph is
covered, that is it has at least one of its ending vertices
which is marked. If such covering can be found the graph
is said to be coverable (COV), otherwise it is uncoverable
(UNCOV).

The backtrack algorithm proceeds by choosing at ran-
dom one or more variables at a time and assigning their
values according to some heuristics. The problem is then
turned into a subproblem in which the assigned variables
act as correlated quenched randomness. For instance, in
VC one declares covered or uncovered a vertex at a time,
therefore reducing the size of the graph to be treated.

This evolution can be described macroscopically [9]
by keeping track of a proper set of average quantities �a
(e.g., the ratio of the number of nonsatisfied constraints
to the number of nonassigned variables). The subproblem
generated by fixing a fraction t of the N variables may,
however, not have any solution (this happens because the
algorithm made a wrong assignment at an earlier stage).
Sooner or later the algorithm detects the inexistence of so-
lutions compatible with the variables assigned so far and
begins a backtrack correction process which may take an
exponential number of steps to correct early mistakes.

The fraction t of assigned variables acts therefore
as a control parameter and the system undergoes a
SAT-UNSAT phase transition (i.e., a transition from a
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satisfiable to an unsatisfiable instance of the problem)
when t crosses some critical value tc [9]. This corre-
sponds to the trajectory �a�t� crossing a critical surface
in the static phase diagram at �ac � �a�tc�. For simple
enough randomized algorithms it is possible to compute
the size eNV� �a� [9,10] of the backtracking tree for an
UNSAT instance characterized by the parameters �a. The
computational complexity of the algorithm is therefore
given by exp��1 2 tc�V� �ac�N�.

How do rare events enter this scenario and how to take
advantage of their presence? The idea is that very lucky
(or unlucky) assignments of the variables in the early
stages of a run (i.e., in the prebacktracking regime) can
have dramatic effects on the total running time. In the
case of VC one may randomly chose to cover some very
important vertex in one of the first iterations, leading to a
great simplification of the remaining subgraph. These rare
events can take two distinct forms in the general picture
described above.

(I) Let us assume that the trajectory �a�t� follows the
most probable line. Once the SAT-UNSAT critical line is
crossed there still exists a small probability exp�2N�1 2

t�c��� �a�t����� of having generated a subproblem which is
solvable. The deeper one goes into the UNSAT phase, the
smaller will be such probability. On the other hand such a
rare event corresponds to a reduction of order N of the size
of the problem and, therefore, to an exponential reduction
of the size exp�N�1 2 t�V��� �a�t����� of the backtracking tree.

This trade-off can be exploited in a random restart al-
gorithm: we interrupt the search after eNtR backtrack-
ing steps and rerun it (with different random numbers).
The probability of finding a solution in one of such runs
is given by PS 	 exp�2N mint�1 2 t�c��� �a�t�����, where
t is constrained by the fact that the size of the back-
tracking tree must be smaller than eNtR : this implies
�1 2 t�V��� �a�t���� # tR . Assuming that different stochastic
runs quickly lead to uncorrelated subproblems, a solution
is found after NR 	 1�PS restarts. The complexity of the
algorithm is therefore exp�Nt�tR��, where

t�tR� � tR 1 min
t

�1 2 t�c��� �a�t���� , (1)

and where the minimizing value of t must satisfy

�1 2 t�V��� �a�t���� # tR . (2)

(II) The above scenario is, however, largely incomplete.
Indeed there exists another, dynamical, source of fluctua-
tions: O�1� fluctuations with respect to the typical trajec-
tory (this effect has been studied and pointed out to us by
Cocco and Monasson [11]). At time t the macroscopic pa-
rameters take the value �a with probability exp�2NIt� �a��
[with It� �a� � 0 along the typical trajectory �a � �a�t�].
Again, such a rare event implies an exponential change
in the computational complexity, and the possible gain can
be exploited by the random restart algorithm. Equation (1)
must be properly generalized. We get

t�tR� � tR 1 min
t, �a

�It� �a� 1 �1 2 t�c� �a�� , (3)
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always with the constraint Eq. (2). These are not the only
sources of fluctuations, but they give a quite accurate pic-
ture of the phenomenon.

Let’s now apply the above scheme to the case of VC.
A nontrivial ensemble of graphs which captures some
relevant computational features of VC at the level of typi-
cal or average cases, is the set of random graphs GN ,L

with N vertices and L edges (and flat probability distri-
bution). Similarly to other random NP-complete problems
[1], a threshold phenomena occurs as the control parame-
ter X is changed [12]. For a given average connectivity
c � 2L��N 2 1�, when the number X � xN of covering
marks is lowered the model undergoes a COV-UNCOV
transition at some critical density of covers xc�c� for N !

`. Statistical mechanics methods allow for a precise esti-
mate of xc�c� [13] and probabilistic tools provide rigorous
lower and upper bounds for such a threshold [14]. For
x . xc�c�, vertex covers of size Nx exist with probability
one, for x , xc�c� the available covering marks are not
sufficient. The statistical mechanics analysis is performed
by mapping the optimization problem onto a zero tempera-
ture disordered system with Hamiltonian [12]

H��n�� �
X

i

dni ,0 , (4)

where ni [ �0, 1� (ni � 0 if a mark is put on vertex i) and
satisfy an excluded volume constraint: if �ij� [ G then
either ni � 0 or nj � 0. The ground state energy EGS of
the model is the minimum number of marks needed for
covering the graph: for X $ EGS the graph is COV, while
for X , EGS it is UNCOV.

It is known experimentally and analytically for some al-
gorithms [10] that the typical computational cost, given,
e.g., by the number of visited decision nodes in the back-
tracking tree, becomes exponential for initial conditions
in a region close to or below xc�c�, while it remains linear
well inside the coverable phase, x . xc�c�. This easy-hard
scenario characterizes the typical-case complexity pattern
found in other NP-complete random ensembles [8].

We consider the following backtrack algorithm [15].
During the computation, a vertex can be covered, uncov-
ered, or just free, meaning that the algorithm has not yet
assigned any value to that vertex. Here is the recursive
procedure: The algorithm chooses a vertex i at random
among those which are free (at t � 0 all vertices are free).
If i has neighboring vertices which are either free or un-
covered, then the vertex i is declared covered first. In case
i has only covered neighbors, the vertex is declared uncov-
ered. The process continues unless the number of covered
vertices exceeds Nx. If the algorithm backtracks, then the
opposite choice is taken for the vertex i unless this cor-
responds to declaring uncovered a vertex that has one or
more uncovered neighbors. The algorithm halts if it finds
a solution (and declares the graph to be COV) or after
exploring all the search tree (in this case it declares the
graph to be UNCOV).
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In order to study the prebacktracking regime we need
to follow the variables X, N , L which become time de-
pendent. In one time step �T ! T 1 1�, the probability
for a change L ! L 1 DL in the number of links and
X ! X 1 DX in the number of available covering marks
reads

PDL,DX � e2c

"
dDX,0dDL,0 1

X̀
k�1

ck

k!
dDX,21dDL,2k

#
.

(5)

This defines a Markov process in the space �X, GN ,L�
which mimics the effects of the algorithm. We want to
iterate the above step DT times and compute the cor-
responding transition probability. Let us introduce the
rescaled time t � T�N (i.e., the fraction of assigned vari-
ables) and the macroscopic time dependent parameters
c�t� � 2LT �NT and x�t� � XT �NT (which we denoted
collectively by �a in the general description of our ap-
proach). Because of the Markovian structure of this pro-
cess, the probability for a trajectory �a�t� � �c�t�, x�t�� can
be written in a path integral form. To the leading order we
get P�c, x� �

R
D s exp�2N

R
dtLt�c, x, s��, where

Lt�c, x, s� � 2
i
2s≠t��1 2 t�c� 1 �2 �̃x� log�2 �̃x�

1 �1 1 �̃x� log�1 1 �̃x�

1 �̃x log�exp�ceis� 2 1� 1 c , (6)

where we used the shorthand: x̃�t� � �1 2 t�x�t�. The
transition probability Pt1 �c0, x0 ! c1, x1� is given by the
corresponding constrained path integral. Such an integral
can be computed by saddle point, leading to an explicit
formula for the trajectories:

c�t� �
c0

1 2 t
2

2
B�1 2 t�

Z eB

eB�12t�
dz

logz

z 2 A
, (7)

x�t� �
x0 2 t

1 2 t
2

A 2 1
AB�1 2 t�

log

Ω
1 2 Ae2B

1 2 Ae2B�12t�

æ
, (8)

where the two integration constants (A and B) must be
computed from the conditions c�t1� � c1, x�t1� � x1.
The large deviation functional is It1 �c1, x1� �

Rt1

0 dtLt�?�,
where the integral is computed along the trajectory (7),(8).
For A � 0 and B � c0 we recover the typical trajectory
[16] and we get It�c, x� � 0. As shown in Fig. 1, nu-
merical simulations are in remarkable agreement with the
analytical predictions.

A subgraph generated according to the process described
above can be still COV (with an exponentially small proba-
bility) after the trajectory �a�t� � ���c�t�, x�t���� has entered
the UNSAT phase [i.e., after x�t� , xc���c�t����]. Repeated
restarts can exploit this rare event. The size exp�N�1 2

t�V��� �a�t����� of the backtrack tree at any point in the
UNCOV region can be computed analytically [10] and
used in Eq. (2). Hence, in order to evaluate Eq. (3), we
just need to compute the probability of being COV in the
UNCOV region, that is we need to know the probability
178701-3
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FIG. 1. Dynamical rare events. We consider the probability
Pt�x� that, after Nt steps we are left with Nx marks, and we plot
It�x� � 2 logPt�x��N . The continuous line is the theoretical
prediction It �x� � mincIt�c, x�, while the symbols are numerical
results for N � 100 (empty circles), 200 (squares), 300 (stars),
and 400 (full circles). We used the initial condition c0 � 2,
x0 � 0.5, and t � 0.5.

distribution of the ground state energy of the model
(4). This computation can be carried over by the replica
method. We notice that the replicated partition function
averaged over the disorder reads


Zn� !
Z `

0
dP�EGS �e2vEGS , (9)
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FIG. 2. Random restart experiments with initial condition at
c0 � 3.2, x0 � 0.6 (empty circle). The long dashed line is the
replica symmetric critical line x � xc�c�. The rightmost dot-
ted line is the typical trajectory. The leftmost one is the rare
trajectory followed by the last (successful) restart of the algo-
rithm when tR � 0.1. The symbols are numerical results for the
�c, x� coordinates of the root of the backtrack tree generated by
the algorithm since the last restart. Triangles, squares, and stars
correspond, respectively, to N � 30, 60, and 120 (in each case
we considered several values for tR , each one corresponding to
a symbol). The continuous line is the theoretical prediction for
the same quantity [i.e., the minimizing �a � �c, x� in Eq. (3)].
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FIG. 3. Typical computational complexity of the random
restart algorithm. Here we plot the logarithm of number of
nodes visited by the algorithm divided by the size N , for
different values of the restart rate tR . Symbols refer to N � 30
(circles), 60 (triangles), and 120 (diamonds). The stars are the
result of an N ! ` extrapolation. The continuous and dashed
lines reproduce the theoretical prediction with, cf. Eq. (3), and
without, cf. Eq. (1), dynamical rare events.

where one takes the zero temperature limit b ! ` keep-
ing v � nb fixed. As N ! `, 
Zn� � exp�2Nf�v��
and P�EGS� � exp�2Nc�x��, where x � EGS�N . We get
therefore f�v� � c�x� 1 vxjv�2≠xc .

The small v behavior of f�v� yields the typical ground
state energy and its small fluctuations. The knowledge of
the whole function f�v� gives the large deviation proper-
ties of the ground state energy. In general c�x� is convex
and has its unique zero at the typical ground state energy
x � xc�c�. The probability that a graph in the ensemble
is coverable with X � Nx , Nxc�c� marks is given by
exp�2Nc�x��. A replica symmetric calculation yields

f�v� � c�1 2 FQ� 1
c

2
logFQ

2 log�e2v 1 �1 2 e2v�e2cFQ Q� , (10)

where we used the short-hand FQ � �1 1 �e2v 2

1�Q2�21 and Q satisfies the self-consistency equation:
Q21 � 1 2 e2v�1 1 exp�cFQQ��. Figure 2 gives the
geometrical picture of a random restart experiment. Quite
remarkable is the prediction on the �c, x� values up to
which the algorithm has to backtrack before finding the
solution. Such a curve lies well inside the UNCOV region
indicating that the two types of rare events are both
relevant for tR . 0.

In Fig. 3 we consider the computational complexity
eNt�tR� of the random restart algorithm for the initial con-
dition c � 3.2, x � 0.6. Finite size effects are important
for the achievable sizes of the problem. An extrapolation
can be done for the smaller values of tR, where we were
able to run the algorithm on much larger systems.

Building on large deviations results we have shown that
running times of randomized complete search algorithms
can be exponentially reduced by a restart strategy. The
178701-4
optimal restart rate t
opt
R can be computed within our ap-

proach: for VC we find t
opt
R � 0. This implies restarting

after a subexponential —but at least linear — running time.
The computational complexity of this strategy is given by
the probability P0 � maxtPt�c0, x0 ! 0, 0� (for c0 � 3.2,
x0 � 0.6, we get P0 � e20.049N ) of trajectories which do
not cross the critical line. For a thorough investigation of
the subexponential regime, see [11]. In more general cases
we expect t

opt
R . 0 [6].
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