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We show that the distribution of waiting times between earthquakes occurring in California obeys a
simple unified scaling law valid from tens of seconds to tens of years. The short time clustering, com-
monly referred to as aftershocks, is nothing but the short time limit of the general hierarchical properties of
earthquakes. There is no unique operational way of distinguishing between main shocks and aftershocks.
In the unified law, the Gutenberg-Richter b value, the exponent 21 of the Omori law for aftershocks,
and the fractal dimension df of earthquakes appear as critical indices.
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Earthquakes are a complicated spatiotemporal phenome-
non. The number of earthquakes with a magnitude M . m
is given by the Gutenberg-Richter law [1]. In addition to
the regularity in the rate of occurrence, earthquakes display
a complex spatiotemporal behavior [2,3]. The spatial dis-
tribution of epicenters is fractal and they occur on a fractal-
like structure of faults [3,4]. Short-range temporal
correlations between earthquakes are expressed by
Omori’s law [5], which states that immediately following
a main earthquake there is a sequence of aftershocks
whose frequency decays with time as T2a , a � 1. This
has led to the commonly held belief that aftershocks are
caused by a different relaxation mechanism than the main
shocks.

The observed temporal complex behavior is obviously of
dynamical origin. However, the statistics of earthquakes,
as well as the geometrical fractal structure displayed by the
faults and by the spatial distribution of epicenters, is also
a result of a dynamical process and one might speculate
whether it is possible to unify these observations.

We propose a unified scaling law for the waiting times
between earthquakes, expressing a hierarchical organiza-
tion in time, space, and magnitude. There is a correlated
regime where the distribution of waiting times between
earthquakes is a power law T2a , a � 1 and an uncorre-
lated regime. However, the waiting time interval for the
crossover between the two regimes for earthquakes larger
than a given magnitude depends on the area and magnitude
under consideration.

An earthquake catalog covering the period 1984 –2000
in a region of California spanning 20±N–45±N latitude
and 100±W–125±W longitude was analyzed [6]. The total
number of recorded earthquakes in the catalog is 335 076.
The number of earthquakes N�M . m� with a magnitude
larger than m is given by the Gutenberg-Richter law [1]
log10N �M . m� ~ 2bm, b � 0.95 (see Fig. 1).

The spatiotemporal analysis was carried out as follows.
We covered the region with a grid with cells of size L 3 L
(see Fig. 2) and defined the waiting time T as the time
interval between the beginning of two successive earth-
0031-9007�02�88(17)�178501(4)$20.00
quakes. We then measured PS,L�T�, the distribution of
waiting times T , between earthquakes occurring within
range L whose magnitudes are greater than m � log�S�.

Figure 3 shows the resulting set of curves PS,L�T�, for
time scales ranging from seconds to 16 years, for several
values of S and L, plotted on double logarithmic scale.
Obviously, the curves differ widely. Some general trends
can be seen, however. There is a linear regime, indicating a
power-law distribution, extending up to a cutoff indicating
an upper limit of the waiting time. For fixed cell size L
and increasing cutoff S (or m), the range of the power-law
regime increases. For fixed cutoff S and increasing cell
size L, the range of the power-law regime decreases [7].

In Fig. 4, the curves are replotted in terms of rescaled
coordinates. The x axis is chosen as x � TS2bLdf , and the
y axis represents y � TaPS,L�T�. The rescaling causes a
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FIG. 1. The number of earthquakes N�M . m� with a mag-
nitude larger than m per year (open circles). The dashed line is
the Gutenberg-Richter law log10N�M . m� ~ 2bm, b � 0.95.
The deficit at small magnitude m # 2 is related to the prob-
lems with detecting small earthquakes, so only earthquakes with
m $ 2 will be considered.
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FIG. 2. The region of California divided into grids of two dif-
ferent cell sizes (a) L � 4± and (b) L � 1±.

shift of the curves in Fig. 3 that depends on L and S. For a
suitable choice of the interval exponent a, the magnitude
exponent b, and the spatial dimension df , all the data
collapse nicely onto a single well-defined curve f�x�, that
is,

TaPS,L�T� � f�TS2bLdf � . (1)

This equation expresses the unified scaling law for earth-
quakes. The function f�x� consists of a constant part and
a decaying part, separated by a sharp kink. The constant
178501-2
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FIG. 3 (color). The distribution PS ,L�T � of interoccurrence
time T between earthquakes with magnitude m greater than
log10�S� within an area of linear size L. The solid circles,
squares, and triangles correspond to cutoffs m � log10�S� � 2,
3, and 4, respectively. The color coding represents the linear
size L � 0.25± (black), 0.5± (red), 1± (green), 2± (blue), and
4± (orange) of the cells covering California. For T , 40 s,
earthquakes overlap and individual earthquakes cannot be
resolved. This causes the deficit for small T , so only intervals
T . 38 s will be considered in the following. Notice that,
for fixed cutoff magnitude m but decreasing linear size L, the
deviation from the Omori law T2a , a � 1 sets in for larger
values of T . On the contrary, with fixed linear size L but
decreasing cutoff magnitude m, the deviation from the Omori
law T2a , a � 1 sets in for smaller values of T .

part corresponds to the linear, power-law part in Fig. 3
since we have multiplied PS,L�T� with Ta . Any deviation
from power-law behavior would show up dramatically in
this type of plot. Nevertheless, the function is approxi-
mately constant over 8 orders of magnitude. The rapidly
decaying part is consistent with an exponential decaying
function implying an uncorrelated regime for large values
of x. This is indeed what one would expect on physical
grounds: earthquakes that are separated by large enough
distances or long waiting times will be uncorrelated.

The index a � 1 can be identified as the Omori-law
exponent for aftershocks, b � 1 is the b value in the
Gutenberg-Richter law, and df � 1.2 describes the 2d
fractal dimension of the location of epicenters projected
onto the surface of the Earth.

The data collapse implies that the waiting time distribu-
tion depends on T , S, and L only through the variable x.
Only critical processes exhibit this type of data collapse,
known as scaling in critical phenomena [8], so our analy-
sis demonstrates that earthquakes are a self-organized criti-
cal (SOC) phenomenon [9–11], as had been anticipated
from the existence of the Gutenberg-Richter law [12–15].
The data collapse shows that there is no separate relaxation
mechanism for aftershocks. The three exponents a, b, and
df characterizing earthquakes emerge as critical indices in
178501-2
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FIG. 4 (color). The data in Fig. 3 with T . 38 s replotted
with TaPS,L�T � as a function of the variable x � cTS2bLdf ,
c � 1024 . The data collapse implies a unified law for earth-
quakes. The Omori law exponent a � 1, Gutenberg-Richter
value b � 1, and fractal dimension df � 1.2 have been used in
order to collapse all the data onto a single, unique curve f�x�.
The estimated uncertainty in the exponents is less than 0.2. The
function f is constant for x , 1, corresponding to the correlated
Omori law regime, while it is decaying fast for large arguments
x . 1, associated with the uncorrelated regime of earthquakes.
Whether two earthquakes are to be categorized as belonging to
a correlated or uncorrelated sequence does not depend indepen-
dently on the values of T , S, and L but only on the value of the
product x � TS2bLdf .

the unified law. The estimated uncertainty in the values of
the critical indices is less than 0.2. Whether the critical ex-
ponents vary with region and maybe even with time is an
interesting question that is outside the scope of this Letter
but we urge further studies in that direction.

Depending on the value of scaling argument x, and thus
the chosen values of L and m (or S), two successive earth-
quakes will either be correlated, for x small (i.e., to the left
of the kink in Fig. 4), or uncorrelated, for x large (i.e., to
the right of the kink in Fig. 4).

Depending on the length scale L of observations, and
the magnitude m (or S) chosen, the correlated Omori
T2a regime may range from seconds to tens of years
(and probably much longer if data were available). If
the earthquakes are correlated they may be interpreted
as belonging to an aftershock sequence. If they are
uncorrelated, they may be interpreted as main events.
This interpretation, however, depends on L and m through
the variable x � TS2bLdf and has no absolute meaning.
Therefore, there is no unique way of characterizing
earthquakes as aftershocks or main events unless both L
and S are defined.

To summarize, the short time correlations given by
Omori’s law is just the short time limit of a general hierar-
chical scaling phenomenon occurring at all accessible time
scales. Amazingly, the statistics of aftershocks occurring
178501-3
within minutes of an earthquake can be simply related to
the statistics of earthquakes separated by tens of years.

One may think of the value of m (or S) at the kink as
being a “characteristic” magnitude of earthquakes. How-
ever, since the position of the kink is a function of x, not
m (or S), one cannot specify the magnitude of the charac-
teristic earthquake without at the same time specifying a
time scale and an area. However, there is no special time
scale that can play any absolute role for the dynamics of
earthquakes, limited at the upper end by the time scale of
tectonic plate motion and at the lower end by the duration
of earthquakes.

How should one physically understand the fundamen-
tal law, Eq. (1)? Let us first discuss the meaning of the
scaling variable x � TS2bLdf . The quantity S2bLdf ap-
pearing in its definition is a measure of the average number
of earthquakes per time unit with magnitude greater than
m � log10�S� occurring within the range L. Thus, x is a
measure of the average number of such earthquakes oc-
curring within a time interval T . The law states that the
distribution of waiting times depends only on this number.
When this number exceeds a well-defined value (the posi-
tion of the kink in Fig. 4), the earthquakes sharply become
less correlated.

Think of earthquakes being generated by “processes,”
each producing a sequence of correlated earthquakes with
a T2a distribution. These processes correspond to a se-
quence of avalanches in self-organized critical models of
complex phenomena. Visually, one might think of the pro-
cesses as the activity associated with dynamically chang-
ing fault segment patterns. The law indicates that the crust
operates in the true SOC slow-driving regime [16], where
the individual processes (avalanches) do not overlap. Be-
cause of the nonzero driving rate, several spatially sepa-
rated processes are active simultaneously. The kink on
the f curve indicates the point where one crosses into the
regime where spatially independent earthquakes, belong-
ing to different processes, are sampled within a window
spanned by T and L. For small enough L and T only a
single, correlated process is sampled.
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