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Tracer Diffusion in a Dislocated Lamellar System
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Many lamellar systems exhibit strongly anisotropic diffusion. When the diffusion across the lamellae
is slow, an alternative mechanism for transverse transport becomes important. A tracer particle can
propagate across the lamellae by encircling a screw dislocation. We calculate the statistical properties of
this mode of transverse transport. When either positive or negative dislocations are in excess, transport
across the lamellae is ballistic. When the average dislocation charge is zero, the mean square of the
normal displacement grows like T logT for large times. To obtain this result, the trajectory of the tracer
must be smoothed over distances of order of the dislocation core size.
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Diffusion in layered systems is often strongly aniso-
tropic. The mechanisms and the manifestations of the
anisotropy vary. Often diffusion across is significantly
slower than along the lamellae. For example, enhanced
creep resistance of lamellar alloys, such as industrial TiAl,
is probably due to the high barrier for the dislocations
crossing from one layer to the next [1,2]. In lamellar
phases of diblock copolymers [3], tracer diffusion along
the lamellae can be up to forty times faster than across [4].
The fact that water diffusion in lamellar phases of phospho-
lipid bilayers [5] is strongly anisotropic may be relevant to
attempts to use multilamellar vesicles for drug delivery [6].
Another example of anisotropic diffusion is the kinetics of
electroactive probes in lyotropic liquid crystals [7].

When lateral diffusion is much faster than transverse
diffusion, the tracer can still be transported quickly in the
direction normal to the lamellae by encircling screw dis-
locations. Screw dislocations are indeed common in a va-
riety of layered systems [8–10]. A summary of various
dislocation properties in lamellar systems is presented in
Ref. [11].

By encircling screw dislocations, tracer particles can
reach any point while remaining confined to a layer. The
trajectory of the tracer projected onto a plane parallel to the
layers is a two-dimensional random walk. Upon complet-
ing a closed 2D trajectory, the random walker moves up or
down the number of layers equal to the dislocation charge
enclosed by the trajectory. When a single screw dislocation
is present, the layer number of the walker is the winding
angle around the dislocation divided by 2p. In general,
we consider the sum of the winding angles with the signs
given by the dislocation charges. The change in this quan-
tity along an open trajectory depends on the shape of the
sample due to the contributions of the winding numbers
around distant dislocations. However, when the walker re-
turns to the origin, the change in the total winding number
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is the dislocation charge enclosed by the trajectory. Thus,
we identify the total winding number divided by 2p with
the layer number n�t� which for closed trajectories coin-
cides with the normal displacement of the walker.

In this Letter, we study the diffusion of a tracer particle
confined to the lamellae. The tracer starts at the origin
of layer n � 0 at time t � 0 and explores the x-y plane
with diffusivity D. Let there also be a random distribution
of positive and negative screw dislocations with densities
f1 and f2, respectively. Our goal is to determine the
nature of the transport normal to the layers by predicting
the result of the following experiment. If some amount
of the tracer material is placed at the origin at time t � 0,
what is the density of the resulting cloud of tracer particles
as a function of time?

To accomplish this task, we look at paths which start at
the origin O (Fig. 1) at time t � 0 and arrive at point E
located a distance R from the origin at time T . We seek to
define the layer number n�R, T�. Since the layer number
change is well defined only for closed trajectories, we fix

O

Er(t)

FIG. 1. We complete the path r�t� with a straight segment con-
necting its beginning O and its end E. The winding angle fluc-
tuation along this closed path can be calculated by decomposing
the path into a union of non-self-intersecting loops (denoted by
the solid, dashed, and dotted lines).
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n�R, T � by completing the path r�t� with a straight segment
OE connecting this point to the origin. We define n�R, T �
to be the dislocation charge enclosed by this trajectory.

We must compute the powers of n averaged over po-
sitions of dislocations and random walks which end at
r � R at time t � T . We denote the average over posi-
tions of dislocations with an overbar and the average over
random walks by angular brackets �?�. Because changing
the shape of the completing segment adds a constant to
n�R, T �, its average �n�R, T �� has no physical meaning.
However, its standard deviation s�R, T� � �n2� 2 �n�2 is
independent of the shape of the completing segment. It
gives the shape of the spreading cloud.

We identified two qualitatively different cases. When
f1 fi f2, the average dislocation charge within a closed
trajectory is proportional to its signed area. In this case,
we find that the vertical size of the tracer cloud grows
linearly in time; i.e., there is superdiffusion across the lay-
ers. Moreover, the spreading cloud acquires a biconcave
shape, since s�R, T� ~ D2T2 1 2R2DT . We must note
here that the excess of dislocations of a certain chirality
leads in smectics to the breakup of the homogeneous lamel-
lar phase into domains separated by twist grain boundaries
[12]. We nevertheless pursue this case since it may be ap-
plicable to the Aharonov-Bohm electron phase fluctuations
in a type II superconductor and other systems where geo-
metric winding numbers play a role.

When f2 � f1, a more subtle averaging must be per-
formed since the average dislocation charge in a closed
loop is now zero. We must compute the variance of the
dislocation charge within a closed loop. This variance is
proportional to the unsigned area of the loop which has a
simple geometrical interpretation.

It turns out that, when the dislocations are thought of
as point objects, it is not possible to average the unsigned
area over random walks. The variance of the layer number
obtained in this fashion is logarithmically divergent. Di-
vergences are common in the statistics of winding numbers
of random walks [13–16]. For example, the dispersion of
the winding number of a random walker around a point is
divergent if the walk is continuous. This divergence arises
due to the contributions to the winding number from tra-
jectories that wind tightly around the point. The nature of
our divergence is similar. By traversing a short distance
around a dislocation, the tracer travels far in the direction
normal to the layers. This leads to anomalously fast diffu-
sion in the direction perpendicular to the layers.

We regularize this divergence by noting that the core
size a is the distance of closest approach of the tracer to
the dislocations. Small loops in the trajectory are there-
fore irrelevant. Instead we must consider an effective dis-
crete random walk whose steps are of length a taken every
a2�D seconds. The variance of the layer number then
grows as s�R, T� ~ T logT . Since s�R,T � is independent
of R, the shape of a spreading cloud in this case is an ellip-
soid which elongates in the direction normal to the layers.
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Note also that this divergence is present in the f1 fi f2

case. It leads to a correction of order T logT .
We now describe our methods and results in more detail.

Let ra�t� be the Brownian trajectory of the tracer (here a

is the two-dimensional vector index). We neglect correla-
tions in the velocity �ra�t� on time scales longer than the
scattering time of the walker, which is much smaller than
all other time scales in our problems, so that

��ra �t��rb �t0�� � dab

∑
D
2

µ
d�t 2 t0� 2

1
T

∂
1

R2
a

T2

∏
.

(1)

Equation (1) involves constant terms in addition to the
standard d�t 2 t0� one. This is because we fix r�0� � 0,
ra�T � � Ra, to compute the layer number n as a function
of position R and time T .

Dislocations of charge qi are located at xi
a . qi takes on

values 61. The layer number n�R, T� can be expressed in
the following way:

n�R, T� �
X

i

qi

2p

Z
dt

eab �rb�ra 2 xi
a�

jr 2 xi j2
, (2)

where eab is the antisymmetric tensor of rank 2. Indeed,
the integrand in Eq. (2) is the sum over dislocations of
the infinitesimal change of the angle between the x axis
and the vector connecting the tracer particle and the dis-
location. Thus (2) is the cumulative winding number of
the tracer around the dislocations. The trajectory ra�t�
in (2) consists of a Brownian walk followed by a straight
line from ra�T� � Ra back to the origin. Equation (2)
must be averaged first over dislocation strengths qi and
positions xi and then over Brownian trajectories r�t�. As-
suming that positive and negative dislocations are dis-
tributed uniformly, the dislocation strength is qi � 1 with
probability f1�� f1 1 f2�, and qi � 21 with probability
f2�� f1 1 f2�.

Averaging (2) over the strengths and positions of the
dislocations, we arrive at

n�R, T� � � f1 2 f2�
Z

dt
eab

2
ra �rb . (3)

The integral in (3) can be interpreted geometrically as
the overall area swept by a vector connecting the tracer
to the origin as it moves along its trajectory. The area is
computed with the sign, so that when the vector rotates
clockwise the area it covers is added, while when it moves
counterclockwise it is subtracted from the answer. We re-
fer to the integral in (3) as the signed area. Equation (3)
has a simple intuitive interpretation. The signed area is
the number of times a dislocation is encircled clockwise
minus the number of times it is encircled counterclock-
wise. Therefore, the signed area times the difference in
the densities of 1 and 2 dislocations should give n�R, T �.

At this point, we must clearly distinguish between the
f2 � f1 and f2 fi f1 cases. If the densities are equal,
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n�R, T � computed in this way vanishes, and we must take
into account the fluctuations in the dislocation charge en-
closed by a trajectory. Let us first concentrate on the case
f2 fi f1.

We perform averages over random walks with the help
of (1). First, �n� can be shown to vanish, due to the
straight shape of the completing segment OE. The stan-
dard deviation s�R, T� can then be computed as n2�R, T �.
Second, we can neglect the difference �n2� 2 �n2� which
can be shown to grow slower in time than s�R, T �. We
obtain

s�R, T � � �n2� �
� f1 2 f2�2

48
�D2T2 1 2R2DT � .

(4)

This is the first of the two main results of this Letter. Not-
ing that �R2� � DT for a Brownian walker, we conclude
that the tracer particle indeed moves superdiffusively in
the normal direction. Furthermore, (4) gives us a way to
calculate the approximate shape of a tracer cloud shown in
Fig. 2.

It is possible to compute the entire probability distri-
bution of n�R, T � which gives the density of the cloud.
This calculation involves averaging the exponential of
(3) over the Brownian walks using Gaussian functional
integral techniques. The answer, given in terms of infinite
products, is not illuminating. We note here only that
the probability distribution P�n, T� of a simpler quantity
n�T�, which is the average of n�R,T � over all positions
R, can be calculated in closed form,

P�n, T � �
2

j f1 2 f2jDT

∑
cosh

µ
2pn

� f1 2 f2�DT

∂∏21

.

(5)

The situation becomes more interesting when f2 �
f1 � f�2. In this case, to compute n2 we need to square
(2) first and then average over positions and strengths
of dislocations. Assuming that they are uncorrelated, we

FIG. 2. Five equidistant in time snapshots of the isodensity line
of the vertical slice through the expanding tracer cloud when
f2 fi f1. The cloud’s shape is a figure of revolution of this
slice around the z axis. The lines are drawn at the level where
the density is equal to 0.1 of the maximum density in the center
of the cloud. Note that that cloud develops into a biconcave
shape elongated in the vertical direction (normal to the layers).
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obtain

n2�R, T � � 2
f

4p

Z
dt

Z
dt0

3 �ra�t��rb�t 0�Gab���r�t� 2 r�t0���� , (6)

where Gab�r� � dab log�r� 2 �rarb��r2 is often re-
ferred to as the 2D photon propagator. This formula
represents the unsigned area of the loop formed by r�t�. It
was used in [17] to compute areas of loops in a different
context.

To clarify the meaning of the unsigned area, we compute
it by decomposing a self-intersecting loop into a union
of non-self-intersecting subloops (see Fig. 1). It can be
shown that the variance of the dislocation charge enclosed
by the loop is equal to the sum of the areas of the subloops
plus the sum over all pairs of subloops of the areas of
their intersections, with a plus sign if the two subloops are
traversed in the same direction, and with the minus sign if
they are traversed in opposite directions.

To simplify the task of averaging (6) over Brownian
walks, we follow the example of Ref. [17] and rewrite the
photon propagator in the following equivalent way:

n2�R, T� � 2
f
2

Z
dt

Z
dt0

3 �r1�t��r1�t0� d���r1�t� 2 r1�t0����
3 jr2�t� 2 r2�t0�j . (7)

The advantage of this formula over (6) is in the fact that
r1 and r2 coordinates decouple.

It turns out that the average of (7) over random walks is
logarithmically divergent at t � t0. Anticipating that, we
need only to average (7) at t ! t0. That means we can
neglect all the terms in (1) which depend on T and Ra ,
while keeping only the d�t 2 t0� term. We obtain

�jr2�t� 2 r2�t0�j� �

s
2Djt 2 t0j

p
, (8)

� �r1�t��r1�t0�d���r1�t� 2 r1�t0����� �

s
D

2pjt 2 t0j

3

∑
d�t 2 t0� 2

1
4jt 2 t0j

∏
.

(9)

Substituting these into (7), we find the leading term,

s�R, T� � �n2�R, T�� �
fD
8p

Z
dt

Z
dt0

1
jt 2 t0j

.

(10)

It is clear that the t � t0 divergence in (10) should be
cut off at some time e. Since the trajectory cannot wind
around a given dislocation tighter than the dislocation core
size a, the continuous formula (6) breaks down at distances
smaller than a. We take e � a2�D to be the average time
it takes the random walker to diffuse across a dislocation
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core. Thus, we obtain

s�R, T � �
fDT
8p

log

µ
DT
a2

∂
. (11)

This is the second main result of this Letter. Note that
s�R, T � does not depend on R, unlike (4) which is valid
when f1 fi f2.

In summary, we considered tracer diffusion in a layered
system with screw dislocations. When the transverse diffu-
sion coefficient is small compared to the in-plane diffusion
coefficient, tracer particles are transported in the direction
normal to the layers by encircling screw dislocations. We
study the evolution of a cloud of tracer particles and find
that its height grows faster than its width.

To make quantitative predictions, we must estimate the
conventional transverse tracer diffusion coefficient D�.
Tracer particles can be transported along dislocation cores
or point defects such as pores, necks, and passages as sug-
gested by Constantin and Oswald in [18]. They measured
transverse diffusion in a thin sample of lamellar phase of a
surfactant/water mix. Since their sample contained only a
few dislocations across its thickness, our effect would not
be operative. The effect of an isolated screw dislocation
(see Ref. [15]) is negligible compared with conventional
diffusion D�.

When many screw dislocations are present, we need to
estimate the time after which the superdiffusion due to dis-
locations will dominate conventional transverse diffusion.
We consider the f1 � f2 situation, which is more rele-
vant to experiments. The height of the cloud due to con-
ventional diffusion is roughly equal to the height due to
superdiffusion when D�T � d2fDT log�DT�a2�, where
d is the interlayer distance. Assuming that the dislocation
core size is equal to the interlayer spacing, we find that if
the crossover time,

Tc �
d2

D
exp

µ
D��D

d2f

∂
, (12)

is comparable to the experimentally available time, our
phenomenon should be observable.

The preexponential factor in Eq. (12) in a lamellar phase
of a lyotropic surfactant can be estimated by taking D �
10210 m2�s and d � 50 Å from Ref. [18] to obtain frac-
tions of a microsecond. In diblock copolymer systems, this
prefactor is about 1000 times larger. The feasibility of the
experiment therefore hinges on the value of the exponent
in Eq. (12). Hamersky et al. [4] measured the anisotropy
of the diffusion coefficient in clean samples of diblock
copolymer to be D��D � 1022. Therefore, in order for
our effect to manifest itself, the defect density must be
2 orders of magnitude larger than d2f � 1025 observed
in the shear aligned diblock copolymer system of Ref. [4].
The diffusion of water mixed with egg phosphatidylcho-
line [5] is even more anisotropic D��D � 1023 so that
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our effect can be observed for smaller defect densities. A
promising system is a mixture of lipid and surfactant which
undergoes a lamellar to nematic transition via proliferation
of screw dislocations [9,18].

Finally, we offer a rough estimate of the contribution
of the “pipe” diffusion along dislocation cores to D��D.
Assuming that dislocation cores are filled with a medium
through which the tracer moves with diffusivity D, we
obtain D��D � d2f, which is just the fraction of the area
covered by the cores. The exponent in (12) is then of order
unity. Thus, if the only source of D� were pipe diffusion,
our effect should be easily observable.

In conclusion, we mention situations that require a
modification of our predictions. First, if screw dislocations
are mobile, they will tend to form bound dipole pairs of
size comparable to the core size. Since the bound pairs do
not contribute to the transverse transport of the tracer, only
the density of free dislocations must be used in Eq. (11).
Second, the dislocation motion [11,19] will lead to an
additional mechanism for normal transport of the tracer.
Third, the presence of edge dislocations impedes in-plane
diffusion of the tracer. This fact may be successfully taken
into account by renormalizing the in-plane diffusivity.

The authors are grateful to R. Selinger for seeding the
idea which led to this calculation.
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