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The critical behavior of the random-field Ising model has long been a puzzle. Different methods
predict that its critical exponents in D dimensions are the same as in the pure �D 2 2�-dimensional
ferromagnet with the same number of the magnetization components contrary to the experiments and
simulations. We calculate the exponents of the random-field O�N� model with the �4 1 e�-expansion
and obtain values different from the exponents of the pure ferromagnet in 2 1 e dimensions. An infinite
set of relevant operators missed in previous studies leads to a breakdown of the �6 2 e�-expansion.
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The role of quenched disorder in condensed matter de-
pends on its strength, but even weak disorder can strongly
modify the nature of the phase transition. This effect is
most prominent in the case of random-field (RF) disorder
which breaks both the translational symmetry and the sym-
metry with respect to transformations of the order parame-
ter. In particular, in some systems the arbitrarily weak
disorder of this type destroys long-range order [1]. The
strong effect of weak disorder makes it difficult to apply
the standard perturbative methods of phase transition the-
ory to RF problems. Besides, it is much more difficult to
solve exactly a random model than a pure one. As a result,
a theory of critical phenomena in the presence of random
fields is still absent.

The large number of systems with RF disorder provides
a strong motivation to develop such theory. Some of these
systems have been known for a long time. Examples are
disordered antiferromagnets in the external magnetic field
[2], binary liquids in random porous media [3], and vor-
tices in disordered superconductors [4]. Recently a lot of
attention was devoted to related problems of disordered
liquid crystals [5] and liquid He-3 in aerogels [6]. In con-
trast to the pure systems even the question of ordering at
low temperatures in the presence of random fields is non-
trivial. The more difficult problem of the critical behavior
is still open in spite of two decades of investigations.

After a lot of controversy the lower critical dimension
of the RF Ising model was found [1], but the structure of
the phase diagram and the nature of the transition to the
ferromagnetic state are still unclear. Different theoretical
approaches to the paramagnet-ferromagnet transition pre-
dict the dimensional reduction [1]: the critical exponents of
the RF O�N � model in D dimensions should be the same
as in the pure O�N� model in D 2 2 dimensions. This
prediction relates the three-dimensional RF Ising model to
the one-dimensional pure system in contradiction to the
presence of long-range order in the former and its absence
in the latter. Moreover, the high-temperature expansion
[7] shows that the dimensional reduction rule is invalid in
any dimension less than the upper critical dimension 6.
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The most elegant derivation of the dimensional reduction
[8] provides an (incorrect) exact solution of the RF O�N�
model at zero temperature. The failure of that approach
was explained by Parisi on the basis of the complicated
energy landscape of the model [9]. However, such an ex-
planation is insufficient for the renormalization group (RG)
and 1�N-expansion. It was conjectured [9] that RG fails
because of nonperturbative corrections to the expansion in
e. However, such corrections are not found and recent nu-
merical results [7] suggest that the existing predictions for
the coefficients of the series in e are wrong [10].

A possible reason why the perturbation theory does
not provide satisfactory results is the appearance of some
additional relevant operators missed by the existing ap-
proaches. This phenomenon is responsible for the fail-
ure of the standard RG theory to predict the order of the
phase transition in some systems [11]. The possibility of
a similar phenomenon in the RF O�N � model was first
suggested in Ref. [12], but no new values of the criti-
cal exponents were found. Recently a similar idea was
used in Ref. [13], but it also did not allow one to calcu-
late the exponents. In the present Letter we demonstrate
that there are indeed some additional relevant operators in
the problem, although not those found in Ref. [13]. We
calculate the critical exponents of the RF O�N � model in
4 1 e dimensions and show that they do not satisfy the
dimensional reduction. We also demonstrate how the ad-
ditional relevant operators lead to a breakdown of RG in
6 2 e dimensions. Some phenomenological approaches
[14] allowed one to obtain the critical exponents differ-
ent from the dimensional reduction prediction. However,
their results based on different unproven assumptions con-
tradict each other. An important breakthrough was made
by Mezard and Young [15] who considered the possibility
of the replica symmetry breaking in the RF O�N� model
at large N . Unfortunately, the approach [15] did not allow
the calculation of the exponents. The present Letter con-
tains the first systematic method that explains the failure
of RG and allows us to find the critical exponents of the
RF systems.
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In the critical point the RF O�N� model can be described
by the connected and disconnected correlation functions
[1]:

Gcon�q� � ��n�q�n�2q�� 2 �n�q�� �n�2q��� � q221h;

Gdis�q� � ��n�q�n�2q��� � q241h̄ ,
(1)

where n�q� is the Fourier component of the magnetization,
the square brackets denote the thermal average, and the
angular brackets denote the disorder average. To calculate
the critical exponents h and h̄ we develop the e-expansion
near the lower critical dimension 4 following the line of
Ref. [16]. Our starting point is the Hamiltonian of the RF
O�N� model

H �
Z
dDx

"
J

X
m

≠mn�x�≠mn�x� 2
X
k

�hk�x�n�x��k
#

,

(2)

where the unit vector of the magnetization n�x� has N
components and hk are random fields with zero aver-
age, �hk,a�x�hq,b� y�� � Hkdabdkqd�x 2 y�. The Ham-
iltonian includes an infinite set of random anisotropies of
different ranks. These contributions are allowed by sym-
metry and turn out to be relevant in the RG sense. The
replica Hamiltonian has the form

HR �
Z
dDx

∑ X
a

1
2T

X
m

≠mna≠mna

2
X
ab

R�nanb�
T2 1 . . .

∏
, (3)

where a,b are replica indices, R�z� is some function, T
the temperature, and the dots denote the irrelevant terms.
Near the zero-temperature fixed point the whole function
R�z� is relevant. Indeed, to ensure the fixed length con-
dition n2

a � 1 at each RG step, we ascribe the scaling
dimension 0 to the magnetization n. The scaling dimen-
sion of the temperature is 22 1 O�e�. The relevance of
any operator is determined by the number of the deriva-
tives in it and the power in which it contains the tempera-
ture. This shows that all operators Rk �

P
ab�nanb�k�T2

are relevant in the same space dimensions. The func-
tional RG equations in 4 1 e dimensions were derived in
Ref. [12] (see also [16]). We represent each replica na�x�
of the magnetization as a combination of small-scale fields
f
a
i �x�, i � 1, . . . , �N 2 1� and a large-scale field n0a�x�

of the unit length: na�x� � n0a�x�
p

1 2
P
i�f

a
i �x��2 1P

i f
a
i �x�eai �x�, where the unit vectors eai �x� are perpen-

dicular to each other and the vector n0a�x�. The fields fi

change at small scales a , r , L, where a is the ultra-
violet cutoff, L ¿ a. The field n0 changes at the scales
r . L. The RG procedure consists in integrating out the
small-scale fields fi and the rescaling such that the effec-
tive Hamiltonian of the field n0 would have the structure
(3) with new constants. The RG equation in the first order
in e reads
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dR�f�
d lnL

� 2eR�f� 1 �R00�f��2 2 2R00�f�R00�0�

2�N 2 2�
∑

4R�f�R00�0�1 2 cotfR0�f�R00�0�

2

µ
R0�f�
sinf

∂2∏
1 O�R3,T� , (4)

where we define cosf � nanb to make the equation more
compact, and the prime denotes the derivative with respect
to f. We are looking for the zero-temperature fixed point
R��f� that describes the phase transition in the RF ferro-
magnet and satisfies the equation dR��f��d lnL � 0. The
critical exponents (1) can be expressed [16] via the RG
charge R��f�:

h � 22R00��0�; h̄ � 22�N 2 1�R00��0� 2 e . (5)

Equation (4) has no fixed points R� � e analytical in
f [12]. This was interpreted [12] as a sign of the strong
coupling regime R� � 1. We find a nonanalytic weak cou-
pling fixed point R� � e, RIV��f � 0� � `. If one de-
rives multiloop corrections to Eq. (4) under the assumption
of analytic R�f� the substitution of our fixed point would
lead to an inconsistency since high-order derivatives of R�

enter such a multiloop RG equation. A correct derivation
of the higher-order corrections to Eq. (4) is based on the
iterative minimization of the Hamiltonian [17] and shows
that nonanalytic contributions �e3�2 to the critical expo-
nents are possible.

Note that R00��0� , 0 since Gcon�r� � r2�N21�R00��0�

must be limited. The solution of Eq. (4) can be found
numerically with shooting. The region of possible R00��0�
is limited by the restrictions

e��2�N 2 3�� $ 2R00��0� � h�2 $ e��2�N 2 2�� .

(6)

The first inequality follows from the Schwartz-Soffer in-
equality [18] and is the stability condition for the fixed
point [16]. The second one can be derived from the third
term of the expansion of the function R��f� at small f:

R��f� � 2
�N 2 1�R00��0�2

e 1 4�N 2 2�R00��0�
1
R00��0�

2
f2

6

s
R00��0�e 1 2�N 2 2�R00��0�2

18�N 1 2�
jfj3 1 . . . .

(7)

Since coefficients of Eq. (4) are singular at f � 0, p, it
is difficult to solve Eq. (4) numerically at the vicinity of
points 0 and p. I used the expansions of R��f� in powers
of jfj and �p 2 f� near points 0 and p, respectively.
The numerical integration of Eq. (4) was used in the region
where the coefficients are not very large. We have solved
the RG equation at N # 5. At N . 2 Eq. (4) has exactly
one solution compatible with the condition (6).

The critical exponents for those N [19] are
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h�N � 3� � 5.5e, h̄�N � 3� � 10.1e ;

h�N � 4� � 0.79e, h̄�N � 4� � 1.4e ;

h�N � 5� � 0.42e, h̄�N � 5� � 0.70e .

One can see that the critical exponents are different
from the dimensional reduction values h�4 1 e� �
h̄�4 1 e� � hpure�2 1 e� � e��N 2 2�. The incorrect
prediction of dimensional reduction in 4 1 e dimensions
[20] could be obtained from Eq. (4) with the wrong
assumption that there is an analytical solution R��f�
controlling the critical point.

The second of the inequalities (6) shows that for the XY
model �N � 2� there is no appropriate solution of the RG
equation. This can be explained by the fact [4] that the RF
XY model possesses quasi-long-range order in dimension
3. Hence, it has a phase transition in three dimensions.
Thus, the critical disorder strength R��f� is finite in 4 1 e

dimensions and cannot be found with the expansion in
powers of infinitesimal e.

We have demonstrated the existence of an infinite set
of relevant operators near four dimensions in the RF O�N �
model. A possible explanation of the failure of the �6 2 e�-
expansion is thus the appearance of additional relevant op-
erators below some dimension D , 6. However, we show
that another scenario takes place: an infinite set of relevant
operators emerges in any dimension less than the upper
critical dimension 6. Since the upper critical dimension
is the same for the Ising and O�N� models our approach
allows us to consider both cases in the same way.

Near six dimensions it is convenient to use the Ginzburg-
Landau model with the random field h�x�,

H �
Z
dDx ��=m�2 1 g�m2�2 2 h�x�m� , (8)

that can be described by the replica Hamiltonian

HR �
Z
dDx

"X
a

�=ma�2 1
X
a
g�m2

a�2 2 D
X
ab

mamb

#
,

(9)
where ma are the replicas of the N-component magne-
tization. The standard power counting suggests that all
operators which are relevant in 6 2 e dimensions are in-
cluded in Eq. (9). However, if it were so, the dimensional
reduction would be correct. The hint as to why the power
counting fails is given by the theory of the metal-dielectric
transition. It was argued that in the nonlinear sigma model
for the metal-dielectric transition one should include an
infinite set of relevant operators [21] missed by the power
counting. It turns out that the same phenomenon takes
place in the RF ferromagnet. As shown below the dan-
gerous operators are Ak �

P
ab��ma 2 mb�2�k . Since at

k . 1 their canonical dimensions

dkc � �4 2 e�k 2 6 1 e (10)

are positive, the power counting predicts that these opera-
tors are irrelevant. However, it is important to consider the
anomalous dimensions of Ak .
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For any eigenoperator Ak of the RG transformation the
RG equation has the structure

dAk
d lnL

� �Ck0 1 Ck1 es 1 o�es��Ak 1 O�A2� . (11)

The power counting is based on the sign of the constant C0

and predicts that the operator Ak is irrelevant as Ck0 , 0.
However, if the ratio Ck1 �Ck0 grows up to infinity at large k,
then for any fixed e there is such k that the correction Ck1 es

is greater than Ck0 . Hence, the role of the operators Ak
depends on the signs of Ck1 . In the f4 theory without the
random field this sign is negative for any operator which
is expected to be irrelevant from the power counting [22].
This agrees with the success of the RG approach in that
problem. On the other hand, we shall see that the signs of
these constants are positive for some operators in the RF
problem. This signals that additional relevant operators
emerge.

For the pure f4 model one can define the rank of an
operator with q derivatives and the pth power of the order
parameter as r � p 1 q 2 4. Since only the operators
of the same rank can mix [23], for the calculation of the
anomalous dimension Ck1 es of an operator with rank rk
one can ignore the diagrams which produce the operators
of the higher ranks. It is easy to check that the definition
of the rank has to be modified in the RF problem to ensure
that the operators of different ranks do not mix: r � p 1

q 1 2t 2 6, where t is the number of the different replica
indices in the operator.

To avoid the difficult problem of operator mixing we
guess a set of relevant operators which do not mix with the
other operators of the same rank up to the second order in
e. It turns out that the formerly introduced operators Ak �P
ab��ma 2 mb�2�k are relevant and do not mix with the

other. At k . 1 their canonical dimensions (10) are posi-
tive and proportional to k. We shall see that the anomalous
dimensions are negative and proportional to �ke�2. If one
imposes the fixed length restriction m2 � 1 so that the
Ginzburg-Landau model reduces to the O�N� model, then
the operators Ak can be represented as the linear combina-
tions of the random anisotropies Bk �

P
ab�mamb �k. This

is natural since the operators Bk are relevant in 4 1 e di-
mensions as one could see above.

To the first order in the quartic vertex g the anomalous
dimensions of the operators Ak are zero. To prove this

   line  1

g
A

line  2

∆

FIG. 1. A first order diagram contributing to the anomalous
dimension.
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g

g

A

∆ ∆

FIG. 2. A second order diagram contributing to the anomalous
dimension.

we demonstrate that all diagrams with one vertex gm4
a

and one vertex Aabk � ��ma 2 mb�2�k either are equal to
zero or produce operators of higher ranks. Indeed, any
line of the Feynman diagram corresponds to the product
of a momentum-dependent factor and two operators which
differentiate the vertices at the ends of the line with respect
to replicas ma of the magnetization. For example, line 2
in Fig. 1 acts on the vertex Aabk as the differential operator
≠2 � ≠�≠ma. Line 1 in which the vertex D is inserted acts
on the vertex Aabk as the operator ≠1 � ≠�≠ma 1 ≠�≠mb .
Obviously, ≠1A

ab
k � 0. Hence, any diagram including line

1 is equal to zero. On the other hand, any diagram with
one vertex g, one vertex Ak , and without lines in which D

is inserted produces an operator of a higher rank. Figure 2
shows the only nonzero diagram of the order g2 that does
not increase the rank of the operators Ak . Calculating this
diagram one obtains the anomalous dimension

dk,N
an � k�N 1 2�e2�2�N 1 8�2

2 e2�Nk�2k 1 1� 1 16k2 2 10k��2�N 1 8�2.

(12)

The anomalous dimension (12) is negative and propor-
tional to k2. Thus, at any fixed e one expects that the
operators Ak with 1�e2 & k are relevant but missed by
the existing theoretical methods. Although the rigorous
analysis requires consideration of all orders in e, the ap-
pearance of an infinite set of relevant operators in 6 2 e

dimensions is plausible since such a set exists near four
dimensions and since the alternative explanation [9] of the
failure of RG due to nonperturbative corrections is hardly
compatible with the existing numerical results [7].

In conclusion, we have calculated critical exponents of
the O�N � model in 4 1 e dimensions and demonstrated
that they do not obey the dimensional reduction. The fail-
ure of the dimensional reduction is related to the appear-
ance of an infinite set of relevant operators.
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