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Dual Neutral Variables and Knot Solitons in Triplet Superconductors
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We derive a dual presentation of a free energy functional for spin-triplet superconductors in terms of
gauge-invariant variables. The resulting equivalent model in ferromagnetic phase has a form of a version
of the Faddeev model. This allows one, in particular, to conclude that spin-triplet superconductors allow
formation of stable finite-length closed vortices (knotted solitons).
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In this Letter we discuss spin-triplet superconductors
and show that under certain conditions these supercon-
ductors should allow formation of stable finite-length soli-
tons. The discussions of the stable finite-length solitons in
3 1 1 dimensions have a long history [1–8]. This con-
cept was first discussed in mathematical physics: In [1]
Faddeev introduced a version of nonlinear O(3) s-model
which allows formation of the stable finite-length solitons
which may have a form of a knot or a vortex loop. The
stability of these defects in the Faddeev model is ensured
by a higher-order derivative term:

H �
Z

dr
∑

aj≠k �nj2 1
1

4e2 � �n ? ≠i �n 3 ≠j �n�2

∏
, (1)

where �n is a three-component unit vector.
Recently it was realized that versions of this model are

potentially relevant for description of many different physi-
cal systems ranging from infrared limit of QCD to su-
perconductivity in transition metals [1–8]. Relevance of
this model for condensed matter physics was pointed out
in Ref. [2] where it was found that in two-band super-
conductors there exists a mapping between a two-flavor
Ginzburg-Landau (GL) functional and a version of a O(3)-
symmetric Faddeev model. The knotted solitons are much
more complex and structurally complicated topological de-
fects than Abrikosov vortices, and thus its realization in
superconductors should open an exceptionally wide range
of possibilities of studies of various phenomena associated
with them. The remarkable circumstance is that the studies
of the properties of these defects in superconductors may
result in a “feedback” for the discussions of properties of
possible similar defects in the infrared limit of QCD where
it was argued that it describes glueballs [3].

So far the two-band superconductors were the only
known condensed matter system which is described by
a version of the Faddeev model and allows formation
of the knotted solitons [2]. In this paper we discuss
presentation of the GL functional for a single-condensate
spin-triplet superconductor in gauge-invariant variables
by means of an exact duality mapping which also leads to
another version of the Faddeev model in the ferromagnetic
state of the condensate. A remarkable fact which we
observe below is that the resulting effective model for the
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ferromagnetic spin-triplet superconductor is surprisingly
similar to the model discussed in [2], albeit the physical
origin of this model in spin triplet superconductors is
principally different from the model in [2].

We emphasize that in a charged spin-1 Bose conden-
sate the stable knotted solitons (in which energy is a
nonmonotonic function of its size) are the counterpart of
the Volovik-Mineev vortices characterized by a nontrivial
Hopf invariant in a neutral spin-1 superfluid (discussed
in the pioneering papers on superfluid 3He [9–12]). The
defects considered in [9–12] have similar topology, but
its energy is proportional to its size. Thus, these defects
are unstable against shrinkage.

We begin with reminding the reader of some important
features of the neutral spin-1 condensate following the pa-
per [13]. We write the order parameter of the spin-1 Bose
condensate as Ca�r� �

p
n�x�za�x� where �a � 1, 0, 21�

with z being a normalized spinor zy ? z � 1. Then the
energy functional for a neutral spin-1 system is [13]
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Z
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where �F� � z �
a Fabzb is spin. Degenerate spinors are

related to each other by gauge transformation eiu and
spin rotations U�a,b, t� � e2iFzae2iFybe2iFzt, where
�a, b, t� are the Euler angles. The ground state structure
of Ca�r� can be found by minimizing the energy with fixed
particle number [13]. Below we shall be mainly interested
in ferromagnetic state. This state emerges when c2 , 0.
The energy is minimized by �F�2 � 1 and the ground state
spinor and density are [13]
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BBBB@

e2ia cos2 b

2p
2 cos b

2 sin b

2

eia sin2 b

2

1
CCCCA ,

no�r� �
1

c0 1 c2
m . (3)

From this equation it is seen that in the ferromagnetic case
there exists an equivalence between gauge transformation
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u and spin rotations t so the symmetry group is SO(3)
[13]. Given the expression for the ground state spinor (3)
one can immediately derive the superfluid velocity for a
neutral spin-1 ferromagnetic Bose system [13]:

v �
h̄

M
�=�u 2 t� 2 cosb=a� . (4)

Let us now turn to a charged spin-1 Bose condensate. We
have the following expression for the free energy of the
spin-1 superconductor in the “ferromagnetic” state:
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with ground state spinor and density being given by (3).
Consequently, the equation for the supercurrent is

J �
ih̄en
M

�z �
a =za 2 za=z �

a � 2
4e2n
Mc

A

�
2h̄en

M
�=�u 2 t� 2 cosb=a� 2

4e2n

Mc
A . (6)

From this equation it is seen that the supercurrent depends
not only on phase gradients but also on spin texture.

However, the properties of the charged spin-1 conden-
sate (in particular, topological defects allowed by the sys-
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tem) are principally different from the neutral case that can
be seen if we eliminate gauge field by a duality transfor-
mation to neutral variables which explicitly shows physi-
cal degrees of freedom in the system. Such a mapping,
which is actually very different compared to the problem
discussed in [2], is discussed below.

We emphasize that in the charged case (5) the free en-
ergy features a contribution from magnetic field B2�8p
which can be external or self-induced or both. We also
stress that we consider below a superconductor in a sim-
ply connected space; that is, our defects do not feature
zeros of the order parameter. In this case taking curl from
both sides of (6) [and taking into account that in a sim-
ply connected space for a regular function holds identity
curl=�u 2 t� � 0], we arrive at the following equation
for the magnetic field in triplet superconductor:

Bk � 2
c
4e

�=iCj 2 =jCi� 1
h̄c
4e

��s ? =i �s 3 =j �s� , (7)

where =i �
d

dxi
and we introduced the following notations:

�s � �sinb cosa, sinb sina, cosb� ; (8)

�C �
M
en

J . (9)

Let us rearrange terms in the GL functional (5). First let
us rewrite the second term in (5) as follows:
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where
j � �iz �

a =za 2 iza=z�
a � . (11)

Then we observe the following circumstances:
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From the above expression it follows that
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Now we can express the Ginzburg-Landau functional for spin-1 charged ferromagnetic Bose condensate in the form
involving only gauge-invariant variables (compare with [2]). That is, we eliminate the gauge field A and the variable
u 2 t in favor of the gauge-invariant variables �s and �C . With it Eq. (5) becomes
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The above expression is a version of the Faddeev nonlin-
ear O(3) s-model (1) introduced in [1]. The remarkable
circumstance is that this effective model for a spin-triplet
superconductor is very similar to the effective model for
two-band superconductors where Cooper pairs have spin-0,
but the system possesses a hidden O(3) symmetry [2]. The
resulting model explicitly displays only physically rele-
vant degrees of freedom and indeed does not depend on
u, t, and A. The new variables are n � jCj2, the vector
�s [where the position on the unit sphere S2 is characterized
by the angles a and b (9)] and the massive vector field �C .
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The effective action contains a fourth-order derivative term
for the vector field �s. The field �s is also coupled to the mas-
sive vector field �C . Thus, we can see that the properties of
the charged spin-1 condensate are very different from the
neutral condensate (2). The effective model (13) displays
features of spin-triplet superconductors which can be easily
overlooked in the presentation of the effective functional in
the form (5). In particular, from (13) we can conclude that
the system allows stable knotted solitons characterized by
a nontrivial Hopf invariant where the stability is ensured by
the fourth-order derivative term (the Faddeev term). This
term is not explicitly present in the free energy functional
in the Ginzburg-Landau form (5). It stems from the term
B2�8p and has the physical meaning of the self-induced
magnetic field in the presence of a nontrivial spin texture
(in this paper we discuss a system with no applied external
fields). Indeed, this effect is possible due to the feature of
the ferromagnetic state of p-wave condensate where the
magnetic field may be induced by a spin texture.

Since the effective models for the spin-triplet supercon-
ductor and the two-band superconductor appear as for-
mally very similar, we refer a reader to the paper [2] for
a detailed description of the knotted solitons in the model
(13), whereas below we outline differences of the proper-
ties of solitons in these systems. One of the differences is
that in the spin-triplet case the knot soliton may form as a
nontrivial texture with no inhomogeneities in Cooper pair
density. In particular, this means that there is no mass of
the components of the vector �s whereas in the two-band
case [2] the n3 component of the unit vector �n is related
to relative local Cooper pair densities and is indeed mas-
sive. In principle, in triplet case the components of the
field �s may also acquire a mass if we take into account
spin-orbit interaction which would give �s an energetically
preferred direction. Here we assume spin-orbit interaction
to be small compared with mass for the field �C . Under the
assumption of a small spin-orbit interaction the character-
istic size of a knotted soliton is determined by a competi-
tion of the second-order and fourth-order derivative terms
for �s, and thus it is of order of magnitude of magnetic field
penetration length [14].

We stress that in a two-band superconductor [2], in the
points where the unit vector �n is situated on the south or
north poles of unit sphere S2, the densities of Cooper pairs
of flavor 1 or flavor 2 vanish correspondingly. Since a knot
soliton is characterized by a Hopf invariant that means that
the vector �n necessary hits poles of the unit sphere which
necessarily results in zeros of Cooper pair densities. Also
the contribution to the self-induced magnetic field associ-
ated with the term �n ? ≠i �n 3 ≠j �n vanishes in these areas.
In contrast, the knotted soliton with the same topology in
a spin-triplet superconductor is a nontrivial configuration
of spin texture, and it does not feature zeros of density
of Cooper pairs. When spin-orbit interaction is small, we
can choose, e.g., that the vector �s assumes at infinity the
value corresponding to the north pole of the unit sphere
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and in the knot soliton core reaches the south pole. The
configuration of the self-induced magnetic field associated
with the contribution of �s ? ≠i �s 3 ≠j �s in the spin-triplet
case is the following: the magnetic field vanishes indeed
at spatial infinity (north pole of the unit sphere) and also
the magnetic field vanishes in the knotted soliton “core”
[15]. In between the core and “knot boundary” the self-
induced magnetic field associated with the contribution of
�s ? ≠i �s 3 ≠j �s has a helical geometry characterized by a
corresponding Hopf invariant.

Thus the knot soliton in triplet superconductor has dif-
ferent structural features and different underlying physics
than the knotted solitons in the two-gap superconductor, al-
beit the main feature that these defects have in common is
the self-induced nontrivial configuration of magnetic field
which amounts to a Faddeev term in the effective action
and which stabilizes the size of the soliton. In other words,
a shrinkage of a knotted soliton would result in an increas-
ing energy of the self-induced magnetic field which gives
this defect energetic stability (compare with [1–3]).

Let us also emphasize that the “polar” phase of triplet su-
perconductors is not described by a version of the Faddeev
model and does not allow formation of knotted solitons in
contrast to the ferromagnetic phase. The properties of a
neutral polar phase were investigated in [13]. This state
appears in the case when c2 . 0. The energy is mini-
mized by �F� � 0. The spinor z in the ground state was
calculated in [13]. In a charged counterpart of the system
in the polar phase considered in [13], it can easily be seen
that the supercurrent does not depend on the spin texture,
and this formally results in the absence of a Faddeev term
in the effective action.

In conclusion, we derived an exact equivalent presen-
tation of the free energy functional for the ferromagnetic
spin-triplet superconductor. The derived functional in dual
gauge-invariant variables explicitly displays the physical
degrees of freedom in the system. In particular, it allows
us to conclude that the ferromagnetic spin-triplet supercon-
ductors allow formation of stable knotted solitons. This is
in contrast to a neutral spin-1 condensate where the finite-
length defects characterized by a nontrivial Hopf invariant
are not energetically stable [9–12]. The amazing fact is
that the derived model is very similar to the model con-
sidered in [2] despite being derived from a very different
Ginzburg-Landau functional. It shows that this version of
the Faddeev model is a rather generic model for various
superconductors. The interesting problem is finding an
experimental procedure to create and observe the knotted
solitons. Indeed, in contrast to Abrikosov vortices these
defects cannot be created by simply applying an external
magnetic field. On the other hand, the situation is simpli-
fied by the key feature of these defects, which is that once
they are formed they are stable, being protected against
decay by an energy barrier. One may expect that, e.g.,
a rapid cooling of a system from above to below critical
temperature in, e.g., applied random fields should indeed
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result in a formation of a certain density of topological de-
fects. Apparently an ensemble of these defects, because of
its complex structure, and very different nature comparing
to Abrikosov vortices, should exhibit many unconventional
phenomena and thus should be a very interesting object
for experimental studies, especially since the triplet super-
conductivity has been established experimentally in sev-
eral compounds (e.g., UPt3 and Sr2RuO4 [16]). Finally,
we especially stress that it was suggested in [3] that knot-
ted solitons could play an important role in the infrared
limit of QCD. The fact that similar defects should be
present in p-wave and two-band superconductors and the
macroscopic quantum origin of the topological defects
in condensed matter systems which implies its rather di-
rect observability means that the spin-triplet superconduc-
tors along with two-band superconductors may in some
sense serve as “a testing laboratory” for the infrared limit
of QCD [17].

It is a great pleasure to thank Professor G. E. Volovik for
numerous fruitful discussions and for drawing my atten-
tion to the triplet superconductors. It is an equal pleasure
to thank Professor L. D. Faddeev, Professor A. J. Niemi,
Professor Y. M. Cho, and V. Cheianov for many useful
discussions.

[1] L. Faddeev, Report No. IAS Print-75-QS70, 1975; in Ein-
stein and Several Contemporary Tendencies in the Field
Theory of Elementary Particles, Relativity, Quanta and
Cosmology Vol. 1, edited by M. Pantaleo and F. De Fi-
nis (Johnson Reprint Corporation, New York, 1979).

[2] E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev. B
65, 100512 (2002).

[3] L. D. Faddeev and A. J. Niemi, Nature (London) 387, 58
(1997); Phys. Rev. Lett. 82, 1624 (1999); Phys. Lett. B
525, 195 (2002).

[4] L. D. Faddeev and A. J. Niemi, Phys. Rev. Lett. 85, 3416
(2000); M. Lubcke, S. M. Nasir, A. Niemi, and K. Torokoff,
hep-th/0106102.

[5] J. Gladikowski and M. Hellmund, Phys. Rev. D 56, 5194
(1997); R. Battye and P. Sutcliffe, Phys. Rev. Lett. 81, 4798
(1998); Proc. R. Soc. London A 455, 4305 (1999).

[6] Y. M. Cho, H. W. Lee, and D. G. Pak, Phys. Lett. B 525,
347 (2002); W. S. Bae, Y. M. Cho, and S. W. Kimm, Phys.
Rev. D 65, 025005 (2002).

[7] M. Miettinen, A. J. Niemi, and Yu. Stroganoff, Phys. Lett.
B 474, 303 (2000); A. J. Niemi, Phys. Rev. D 61, 125006
(2000); E. Langmann and A. J. Niemi, Phys. Lett. B 463,
252 (1999).

[8] J. Hietarinta and P. Salo, Phys. Lett. B 451, 60 (1999);
Phys. Rev. D 62, 081701 (2000). For video animations,
see http://users.utu.fi/hietarin/knots/index.html.
177002-4
[9] G. E. Volovik and V. P. Mineev, Sov. Phys. JETP 46, 401
(1977).

[10] V. M. H. Ruutu, Ü. Parts, J. H. Koivuniemi, M. Krusius,
E. V. Thuneberg, and G. E. Volovik, JETP Lett. 60, 671
(1994).

[11] T. L. Ho, Phys. Rev. B 18, 1144 (1978).
[12] Yu. G. Makhlin and T. Sh. Misirpashaev, JETP Lett. 61, 49

(1995).
[13] Tin-Lun Ho, Phys. Rev. Lett. 81, 742 (1998); Tin-Lun Ho

and V. B. Shenoy, Phys. Rev. Lett. 77, 2595 (1996).
[14] The coupling to the field �C also should affect a knot

soliton: a nontrivial configuration of texture �s induces a
magnetic field which in turn should induce screening
Meissner current which amounts to a nontrivial configu-
ration of �C . However, the coupling to �C could not
kill the knot soliton. Indeed, let us assume a knot is
shrinking to a characteristic size smaller than the magnetic
field penetration length l, then we have a nontrivial
configuration of �s which amounts to a self-induced mag-
netic field configuration proportional to �s ? =i �s 3 =j �s
which becomes more and more singular if the soliton is
shrinking. The direction of this self-induced field also
changes inside the knot since the configuration of �s is
helical and is characterized by a Hopf invariant. On the
other hand, the Meissner current �C screens magnetic field
in a superconductor over a characteristic length scale l;
thus, if a texture �s shrinks at characteristic sizes smaller
than l, we have a fast variable �s and a slow variable
�C over which we can average. Thus, at the length

scales smaller than l the model reduced to the model
(1) with an arbitrary accuracy, and the knot solitons in
the model (13) are stable. This can also be understood
intuitively: at the length scales smaller than l the system
almost does not display Meissner effect, and thus the
screening current cannot affect the highly nontrivial con-
figuration of self-induced magnetic field proportional to
�s ? =i �s 3 =j �s.

[15] We emphasize that under the core of the knotted soliton we
understand here the closed line (which may form a loop or
a knot) where the vector �s reaches the south pole. There
are no zeros of Cooper pair density in what we call here
the “core.”

[16] See, e.g., K. Machida and T. Ohmi, J. Phys. Soc. Jpn.
67, 1122 (1998); M. Sigrist et al., Physica (Amsterdam)
317-318C, 134 (1999).

[17] For another recent discussion of another possible feature in
common in low-energy QCD and exotic superconductors
see E. Babaev, Int. J. Mod. Phys. A 16, 1175 (2001); Phys.
Rev. D 62, 074020 (2000); Phys. Lett. B 497, 323 (2001);
K. Zarembo, JETP Lett. 75, 59 (2002); S. J. Hands, J. B.
Kogut, and C. G. Strouthos, Phys. Lett. B 515, 407 (2001);
S. Hands, B. Lucini, and S. Morrison, Phys. Rev. Lett. 86,
753 (2001).
177002-4


