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We show that the “quantized nesting” model misses important features of the magnetic-field-induced
spin-density-wave (FISDW) phase diagram. Among them are the following: (1) the FISDW wave vector
is not strictly quantized; (2) in some compounds, the FISDW diagram consists of two regions: (a) At low
temperatures, there are jumps of the wave vector (i.e., the first order transitions between FISDW phases);
(b) at high temperatures the jumps and the first order transitions disappear, but the wave vector is still a
nontrivial function of a magnetic field. These are in agreement with the experiments on �TMTSF�2PF6 .
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Magnetic-field-induced spin-density-wave (FISDW)
phenomenon has been intensively studied both experimen-
tally and theoretically [1–3] since its discovery in quasi-
one-dimensional (Q1D) organic compounds �TMTSF�2X
(where TMTSF denotes tetramethyltetraselenafulvalene,
X � PF6, ClO4, AsF6, etc.) [1–9] and �DMET-TSeF�2X
(X � AuI2 and AuCl2) [10,11]. The best studied com-
pounds, �TMTSF�2X (X � PF6, ClO4), are characterized
by a simple Q1D electron spectrum under pressure
[1–3,8]:

e6�p� � 6yF �px 7 pF� 2 2tb cos�pyb��
2 2t0b cos�2pyb�� 2 2tc cos�pzc�� , (1)

where 1 (2) stands for the right (left) sheet of the Fermi
surface (FS); yF and pF are the Fermi velocity and Fermi
momentum; tb � 200 K, t0b � 10 K, and tc � 5 K are
the overlapping integrals between electron wave functions
[1–3]; h̄ � 1. It is important that at t0b � 0 the left sheet
of the FS (1) coincides with the right one if it is shifted by
a nesting vector:

Q0 � �2pF , p�b�, p�c�� . (2)

Nesting properties (2) of the Q1D FS (1) [i.e., small enough
value of the “antinesting term,” t0b, in Eq. (1)] and the
Peierls instability [1–3] were suggested [1–3,12] to be
responsible for a SDW ground state in �TMTSF�2PF6 at
T # 12 K, H � 0, and ambient pressure. The first theo-
ries [13,14] of the FISDW phenomenon demonstrated that
an effective space dimensionality of the Q1D electrons (1)
reduces in a magnetic field [13,14]. Therefore, the Peierls
instability [1] results in the appearance of the FISDW
phases even in such compounds where the antinesting term,
t0b , destroys the SDW state at H � 0 [13,14].

An improved theory, a so-called “quantized nesting”
(QN) model, was elaborated [1–3,15–24] on the basis of
the results [13,14]. A keystone statement of the QN model
is that a longitudinal projection of the FISDW wave vector
is quantized:

DQN �r� � DQN exp�iQN r� ,

QN � �2pF 1 2Nvc�H��yF , p�b�, p�c�� ,
(3)
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where N is an integer, vc�H� �
eHyF b�

c is a frequency of
an electron motion along open FS (1) in a magnetic field,

H � �0, 0, H�, A �

µ
0,

e
c

Hx, 0

∂
, (4)

applied perpendicular to the conducting chains of a Q1D
compound (1), where e is the electron charge, c is the
velocity of light.

According to the QN model, each “quantized” FISDW
phase (3) is characterized by its own metal-FISDW
transition temperature, TFISDW�N ,H� [1–3,15,19,20], and
by its own free energy, FFISDW�N , H, T � [1,2,16–18],
which depend on the integer N [see Eq. (3)]. Thus, to
determine the FISDW phase diagram in a framework
of the QN model, it is necessary to find the largest
value of TFISDW�N , H� at fixed H and the lowest value
of FFISDW�N , H, T� at fixed H and T . As a result, a
cascade of the first order phase transitions between the
FISDW phases characterized by different longitudinal
wave vector (3) was theoretically suggested [1–3,15–24]
[see Fig. 1(a)]. An important consequence of the “quanti-
zation rule” (3), a so-called “three-dimensional quantum
Hall effect” (3D QHE), is experimentally observed in
�TMTSF�2X [4–9] and �DMET-TSeF�2X [11] compounds
and is theoretically explained in Refs. [21–24].

We stress that the calculations [1–3,15–24] which es-
tablished the QN model [i.e., Eq. (3)] were performed
only for very low metal-FISDW transition temperatures,
�pTFISDW�N , H�� ø vc�H�. Our main message is that
the QN model has to be considered only as a limiting case
(where �pTFISDW�N , H���vc�H� ! 0) of our more gen-
eral analysis of the equation defining TFISDW�N , H� de-
rived in Ref. [15] (see also Ref. [25]). In other words, we
claim that numerous applications of the QN model [15–24]
to real FISDW phase diagrams in Q1D compounds have to
be theoretically improved.

We demonstrate that, due to an electron-hole asymme-
try of an electron spectrum in the FISDW phase with
N fi 0 [21], an account of a finite transition temperature,
TFISDW�N , H� fi 0, changes the main qualitative conse-
quences of the QN model. In contrast to the QN model, we
© 2002 The American Physical Society 177001-1
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FIG. 1. (a) FISDW phase diagram derived from the QN model
[13–24] consists of a cascade of the first order FISDW tran-
sitions where the integer N [defining the FISDW phase wave
vector (3)] exhibits integer jumps on the phase transition lines.
(b) FISDW phase diagram suggested in the Letter for h , hc
consists of two regions: the “quantum FISDW” [where there
are the first order transitions between the FISDW phases cor-
responding to noninteger jumps of the parameter N in Eq. (3)]
and the “quasiclassical FISDW” (where the first order transitions
disappear). (c) FISDW phase diagram suggested in the Letter
for h . hc corresponds to noninteger jumps of the parameter N
in Eq. (3) on the first order FISDW phase transition lines (see
the text).

show the following: (1) The longitudinal wave vector of
the FISDW phases is not strictly quantized [i.e., N is not an
integer in Eq. (3) unless N � 0]. In particular, this means
that all existing calculations of the 3D QHE [20–24] have
177001-2
to be improved since they are based on a hypothesis about
strict quantization of the wave vector (3) and treat the pa-
rameter N as a topological number. (2) For small enough
values of the ratio h � vc�H���pTFISDW�N , H�� , hc,
the FISDW phase diagram consists of two regions: (a) a
low-temperature region (“quantum FISDW”) where there
exist discontinuous (but noninteger) jumps of the FISDW
wave vector (i.e., the first order transitions between dif-
ferent FISDW phases) [see Fig. 1(b)]; (b) a high tempera-
ture region (“quasiclassical FISDW”) where the jumps and
the first order transitions disappear, but the FISDW wave
vector is still a nontrivial oscillating function of a mag-
netic field [see Fig. 1(b)]. (3) For large enough values of
the ratio h � vc�H���pTFISDW�N , H�� . hc, the FISDW
phase diagram consists of a cascade of the first order phase
transitions between the different FISDW phases. They are
characterized by discontinuous (but noninteger) jumps of
the FISDW wave vector [see Fig. 1(c)]. Note that a special
case of the �N � 1� ! �N � 0� phase transition where
there is an electron-hole symmetry in the N � 0 phase
[1,21] was studied by us earlier [25].

In the Letter we consider a typical for the FISDW phase
diagram phase transition �N � 2� ! �N � 1� where there
are no electron-hole symmetries in both phases, N � 2
and N � 1, to make conclusions about the whole FISDW
phase diagram. As usual [1–3,12–24], we suggest that the
antinesting term, t0b, in the electron spectrum (1) destroys
the SDW phase at H � 0. Let us study the FISDW phases
which appear at high enough magnetic fields by means of
the equation defining TFISDW�N , H� for the Q1D electron
spectrum (1) [1–3,15]:

1
g

�
Z `

d

2pTFISDW�N , H� dZ

yF sinh� 2pTFISDW�N ,H�Z
yF

�

3 J0

µ
4t0b

vc�H�
sin

∑
vc�H�Z

yF

∏∂
cos�kxZ� , (5)

where J0�. . .� is the Bessel function, g is an effective in-
teraction constant, and d is a cutoff distance. Unlike the
previous calculations [1–3,15–24] [where only the “quan-
tized values” of the wave vector, kx � 2Nvc�H��yF , are
considered], below we consider a continuous variable N
and find a maximum of the FISDW transition tempera-
ture, TFISDW�N ,H�, at given H and the parameter h �
vc�H���pTFISDW�N , H��.

Using the following mathematical equalities [26]:

J0�2x sina� �
1X̀

l�2`

J2
l �x� exp�2ila� , (6)

1
sinh� y�

� 2
1X̀

m�0

exp�2y�2m 1 1�� , (7)

it is possible to rewrite Eq. (5) in the form more suitable
for numerical analysis [27]:
ln

∑
T0

TFISDW�N , H�

∏
� 2

1X̀
l�2`

J2
l �l0�

1X̀
M�0

�H�
N �2

�2M 1 1� ��2M 1 1�2 1 �H�
N �2�

, (8)
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H�
N �

vc�H�
pTFISDW�N, H�

�l 2 N � , (9)

where l0 � 2t0b�vc�H�, T0 is a SDW phase transition tem-
perature at H � t0b � 0. [Note that Eqs. (8) and (9) are
mathematically equivalent to Eq. (5) [1–3,15] and, thus,
they define a metal-FISDW phases transition line. An-
other point is that the ratio h � vc�H���pTFISDW�N , H��
is pressure dependent [8] and, thus, can be considered as
an independent parameter.]

Let us solve Eqs. (8) and (9) numerically and find some
critical value of the parameter h, h1,2

c . We define h1,2
c as

follows: at h . h1,2
c there exists a tricritical point corre-

sponding to an intersection of the metal-FISDW second
order phase transition line with the �N � 2� ! �N � 1�
first order phase transition line [see Fig. 1(c)], whereas at
h , h1,2

c this tricritical point disappears [see Fig. 1(b)].
To estimate the value of h1,2

c , one has to minimize the
right-hand side of Eq. (8) at different fixed values of the
parameter h and to find the function N � N �l0, h�. As
it follows from Eqs. (8) and (9), this procedure gives the
maximum values of the metal-FISDW transition tempera-
ture, TFISDW�l0, h�. Then, one has to investigate the func-
tions N � N�l0, h� in order to find the critical value, h1,2

c ,
where the tricritical point disappears.

The results of our numerical calculations are shown in
Fig. 2 and the corresponding FISDW phase diagrams are
presented in Figs. 1(b) and 1(c). We find that the critical
value of the parameter h is h1,2

c � 1 for the �N � 2� !
�N � 1� FISDW phase transition [see Fig. 2(b)]. Indeed,
as it is seen from Fig. 2(a), at h � 1.2 there is a jump of the
variable N and, thus, a jump of the FISDW wave vector
(3) corresponding to the first order �N � 2� ! �N � 1�
FISDW phase transition (we call such FISDW phases the
“quantum FISDW” ones). On the other hand, at h � 1 and
0.8 the above-mentioned jump does not exist anymore and,
thus, the first order �N � 2� ! �N � 1� FISDW phase
transition disappears (we call such FISDW phases the
“quasiclassical FISDW” ones) [see Figs. 2(b) and 2(c)].
Nevertheless, we stress that even at h � 1 and 0.8 the
FISDW wave vector (3) still exhibits a very peculiar behav-
ior. A detailed study of the quasiclassical FISDW states,
including a possibility of the existence of some phase tran-
sitions or crossovers between them, is not a subject of
our Letter, and the corresponding results will be published
elsewhere [28]. We also stress that there is another variant
[1,19] of the QN model which accounts for the possible
changes in a perpendicular component of the wave vector,
Qy�H�, with changing magnetic field. Its main predictions
are the same as the predictions of the QN model consid-
ered in the Letter: the existence of a cascade of the FISDW
first order phase transitions and the 3D QHE due to a simi-
lar quantization rule for a longitudinal projection of the
FISDW wave vector:

QN � �2pF 1 Nvc�H��yF, Qy�H�, p�c�� . (10)
177001-3
FIG. 2. (a) As shown in the Letter, N [see Eq. (3)] exhibits a
noninteger jump at h . h1,2

c . (b) At h � h1,2
c � 1 the jump of

N first disappears. (c) Although at h , h1,2
c the jump does not

exist anymore; nevertheless, the value of N is still a nontrivial
function of 1�H .

We point out that the quantization rules (10) and (3) have
been theoretically proved only in the limiting case where
�pTFISDW�N, H���vc�H� ! 0. Although a detailed study
of the model [19] is not a subject of the Letter, our pre-
liminary results [28] show that the qualitative statements
of the Letter are retained in the model [19]. For ex-
ample, at �pTFISDW�N , H��vc�H�� � 1, the minimum of
the free energy in model [19] corresponds to a noninteger
N � 0.53 [28]. Thus, we conclude that both quantization
rules (3) and (10) are not strictly valid at finite transition
temperatures, pTFISDW�N , H��vc�H� fi 0.

Below, we compare our results with the classical
[6,7] and recent [29] experiments on a compound
�TMTSF�2PF6. If one takes the experimental estimation of
yF � 107 cm�sec [30], one obtains the following estima-
tion of the parameter h: h�

1,2 � vc�H���pTFISDW�H�� #

1. Thus, one may expect that the FISDW phase diagrams
in �TMTSF�2PF6 [6,7,29] consist of two regions: the
177001-3
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quantum FISDW and quasiclassical FISDW. Indeed, as
mentioned in Ref. [6], hysteresis characterizing the first
order FISDW phase transitions disappears at temperatures
lower than the metal-FISDW transition temperature,
TFISDW�H, N�. In a very recent paper [29], this problem
is studied in detail, and the line where the hysteresis
disappears is shown to subdivide the FISDW diagram into
two different areas. In Ref. [7], it is shown that the peaks
of a resistivity determining the FISDW phase transitions
disappear well below TFISDW�H, N�. Therefore, we
summarize that the experiments [6,7,29] are in agreement
with the analysis suggested in the Letter (see Figs. 1 and
2) and are in a qualitative disagreement with the results of
the QN model [15–24] [see Fig. 1(a)].

In conclusion, we point out that, in our opinion, the tem-
perature dependences of the 3D QHE plateaus measured
in Ref. [7] and discussed in Ref. [31] have peculiarities on
some lines inside the FISDW phase diagram. We specu-
late that the 3D QHE exists only in the quantum FISDW
phases and disappears in the quasiclassical FISDW states,
although this problem has to be carefully studied both theo-
retically and experimentally. We stress that the improve-
ment of the existing theoretical descriptions of the FISDW
phases suggested in the Letter gives rise to a discussion
about the physical nature of the 3D QHE since its current
descriptions [20–24] are based on a hypothesis that the
parameter N is an integer topological number which is not
the case, as shown in the Letter. We also expect that such
physical properties as a nonlinear FISDW conductivity and
“magic angle” phenomenon are different in the quantum
FISDW and quasiclassical FISDW phases (see Fig. 1) and
suggest to prove these experimentally.
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