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We show that the “quantized nesting” model misses important features of the magnetic-field-induced
spin-density-wave (FISDW) phase diagram. Among them are the following: (1) the FISDW wave vector
is not strictly quantized; (2) in some compounds, the FISDW diagram consists of two regions: (a) At low
temperatures, there are jumps of the wave vector (i.e., the first order transitions between FISDW phases);
(b) at high temperatures the jumps and the first order transitions disappear, but the wave vector is still a
nontrivial function of a magnetic field. These are in agreement with the experiments on (TMTSF),PFe.
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Magnetic-field-induced  spin-density-wave (FISDW)
phenomenon has been intensively studied both experimen-
tally and theoretically [1-3] since its discovery in quasi-
one-dimensional (Q1D) organic compounds (TMTSF), X
(where TMTSF denotes tetramethyltetraselenafulvalene,
X = PFg, ClOy, AsFg, etc.) [1-9] and (DMET-TSeF),X
(X = Aul, and AuCly) [10,11]. The best studied com-
pounds, (TMTSF),X (X = PFg, ClOy), are characterized
by a simple QID electron spectrum under pressure
[1-3,8]:

e (p) = *vr(ps * pr) — 2t cos(pyb™)
— 21, cos(2pyb™) — 2t cos(p.c”), (1)

where + (—) stands for the right (left) sheet of the Fermi
surface (FS); vy and pp are the Fermi velocity and Fermi
momentum; #, = 200 K, 7, = 10 K, and 7. = 5 K are
the overlapping integrals between electron wave functions
[1-3]; & = 1. It is important that at 1, = 0 the left sheet
of the FS (1) coincides with the right one if it is shifted by
a nesting vector:

Qo = Qpr,7/b",mw/c"). (2)

Nesting properties (2) of the Q1D FS (1) [i.e., small enough
value of the “antinesting term,” t},, in Eq. (1)] and the
Peierls instability [1-3] were suggested [1-3,12] to be
responsible for a SDW ground state in (TMTSF),PF at
T =12 K, H = 0, and ambient pressure. The first theo-
ries [13,14] of the FISDW phenomenon demonstrated that
an effective space dimensionality of the Q1D electrons (1)
reduces in a magnetic field [13,14]. Therefore, the Peierls
instability [1] results in the appearance of the FISDW
phases even in such compounds where the antinesting term,
th, destroys the SDW state at H = 0 [13,14].

An improved theory, a so-called “quantized nesting”
(QN) model, was elaborated [1-3,15-24] on the basis of
the results [13,14]. A keystone statement of the QN model
is that a longitudinal projection of the FISDW wave vector
is quantized:

Ap,(r) = A, exp(iQnr),

) (3)
Qv =[2pr + 2Nw (H)/vp, w/b*, 7/c"],
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PACS numbers: 74.70.Kn, 73.43.—f, 75.30.Fv

Huvpb

where N is an integer, w.(H) = QTF is a frequency of

an electron motion along open FS (1) in a magnetic field,
H=(00H, A= (o, = Hx,o), 4)
c

applied perpendicular to the conducting chains of a Q1D
compound (1), where e is the electron charge, c is the
velocity of light.

According to the QN model, each “quantized” FISDW
phase (3) is characterized by its own metal-FISDW
transition temperature, Trispw(N, H) [1-3,15,19,20], and
by its own free energy, Frispw(N,H,T) [1,2,16-18],
which depend on the integer N [see Eq. (3)]. Thus, to
determine the FISDW phase diagram in a framework
of the QN model, it is necessary to find the largest
value of Tpspw(N, H) at fixed H and the lowest value
of Fpispw(N,H,T) at fixed H and T. As a result, a
cascade of the first order phase transitions between the
FISDW phases characterized by different longitudinal
wave vector (3) was theoretically suggested [1-3,15-24]
[see Fig. 1(a)]. An important consequence of the “quanti-
zation rule” (3), a so-called “three-dimensional quantum
Hall effect” (3D QHE), is experimentally observed in
(TMTSF), X [4-9] and (DMET-TSeF),X [11] compounds
and is theoretically explained in Refs. [21-24].

We stress that the calculations [1-3,15-24] which es-
tablished the QN model [i.e., Eq. (3)] were performed
only for very low metal-FISDW transition temperatures,
[7Trispw(N, H)] < w.(H). Our main message is that
the QN model has to be considered only as a limiting case
(where [7Trispw(N, H)]/w.(H) — 0) of our more gen-
eral analysis of the equation defining Trispw(NV, H) de-
rived in Ref. [15] (see also Ref. [25]). In other words, we
claim that numerous applications of the QN model [15—-24]
to real FISDW phase diagrams in Q1D compounds have to
be theoretically improved.

We demonstrate that, due to an electron-hole asymme-
try of an electron spectrum in the FISDW phase with
N # 0 [21], an account of a finite transition temperature,
Trispw(N, H) # 0, changes the main qualitative conse-
quences of the QN model. In contrast to the QN model, we
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FIG. 1. (a) FISDW phase diagram derived from the QN model
[13—-24] consists of a cascade of the first order FISDW tran-
sitions where the integer N [defining the FISDW phase wave
vector (3)] exhibits integer jumps on the phase transition lines.
(b) FISDW phase diagram suggested in the Letter for 7 < h,
consists of two regions: the “quantum FISDW” [where there
are the first order transitions between the FISDW phases cor-
responding to noninteger jumps of the parameter N in Eq. (3)]
and the “quasiclassical FISDW” (where the first order transitions
disappear). (c) FISDW phase diagram suggested in the Letter
for h > h, corresponds to noninteger jumps of the parameter N
in Eq. (3) on the first order FISDW phase transition lines (see
the text).

show the following: (1) The longitudinal wave vector of
the FISDW phases is not strictly quantized [i.e., N is not an
integer in Eq. (3) unless N = 0]. In particular, this means
that all existing calculations of the 3D QHE [20-24] have

|=—0
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to be improved since they are based on a hypothesis about
strict quantization of the wave vector (3) and treat the pa-
rameter N as a topological number. (2) For small enough
values of the ratio h = w.(H)/[7mTrspw(N, H)] < h,,
the FISDW phase diagram consists of two regions: (a) a
low-temperature region (“‘quantum FISDW”) where there
exist discontinuous (but noninteger) jumps of the FISDW
wave vector (i.e., the first order transitions between dif-
ferent FISDW phases) [see Fig. 1(b)]; (b) a high tempera-
ture region (“quasiclassical FISDW”) where the jumps and
the first order transitions disappear, but the FISDW wave
vector is still a nontrivial oscillating function of a mag-
netic field [see Fig. 1(b)]. (3) For large enough values of
the ratio h = w.(H)/[7Trispw(N, H)] > h,, the FISDW
phase diagram consists of a cascade of the first order phase
transitions between the different FISDW phases. They are
characterized by discontinuous (but noninteger) jumps of
the FISDW wave vector [see Fig. 1(c)]. Note that a special
case of the (N = 1) — (N = 0) phase transition where
there is an electron-hole symmetry in the N = 0 phase
[1,21] was studied by us earlier [25].

In the Letter we consider a typical for the FISDW phase
diagram phase transition (N = 2) — (N = 1) where there
are no electron-hole symmetries in both phases, N = 2
and N = 1, to make conclusions about the whole FISDW

vp sinh[

D cos(k:Z), ()

phase diagram. As usual [1-3,12-24], we suggest that the
antinesting term, #,, in the electron spectrum (1) destroys
the SDW phase at H = 0. Let us study the FISDW phases
which appear at high enough magnetic fields by means of
the equation defining Trispw(N, H) for the Q1D electron
spectrum (1) [1-3,15]:

1 . fm ZWTFISDw(N,H) dz

g 4 ) 27TTFIS]3X(N,H)Z]

% J0< 4tb Sin|: (L)C(H)Z
wc(H) UF

where Jy(...) is the Bessel function, g is an effective in-
teraction constant, and d is a cutoff distance. Unlike the
previous calculations [1-3,15—-24] [where only the “quan-
tized values” of the wave vector, k, = 2Nw.(H)/vF, are
considered], below we consider a continuous variable N
and find a maximum of the FISDW transition tempera-
ture, Trispw(N,H), at given H and the parameter h =
wc(H)/[7mTrispw(N, H)].
Using the following mathematical equalities [26]:

+o0

Jo@2xsina) = > JH(x)expQila), (6)
1 =
=2 Z exp[—y(2m + 1)], (7

sinh(y)

m=0

it is possible to rewrite Eq. (5) in the form more suitable

| for numerical analysis [27]:

T !
] i) 2,20
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where ' = 21}, /w.(H), Ty is a SDW phase transition tem-
perature at H = 1, = 0. [Note that Egs. (8) and (9) are
mathematically equivalent to Eq. (5) [1-3,15] and, thus,
they define a metal-FISDW phases transition line. An-
other point is that the ratio 7 = w.(H)/[ 7 Trispw(N, H)]
is pressure dependent [8] and, thus, can be considered as
an independent parameter.]

Let us solve Egs. (8) and (9) numerically and find some
critical value of the parameter h, h!2. We define hl? as
follows: at h > h!? there exists a tricritical point corre-
sponding to an intersection of the metal-FISDW second
order phase transition line with the (N = 2) — (N = 1)
first order phase transition line [see Fig. 1(c)], whereas at
h < h!? this tricritical point disappears [see Fig. 1(b)].
To estimate the value of k', one has to minimize the
right-hand side of Eq. (8) at different fixed values of the
parameter / and to find the function N = N(A',h). As
it follows from Egs. (8) and (9), this procedure gives the
maximum values of the metal-FISDW transition tempera-
ture, Trispw(A’, ). Then, one has to investigate the func-
tions N = N(A’, h) in order to find the critical value, !,
where the tricritical point disappears.

The results of our numerical calculations are shown in
Fig. 2 and the corresponding FISDW phase diagrams are
presented in Figs. 1(b) and 1(c). We find that the critical
value of the parameter 4 is h'?> = 1 for the (N = 2) —
(N = 1) FISDW phase transition [see Fig. 2(b)]. Indeed,
asitis seen from Fig. 2(a), at h = 1.2 there is a jump of the
variable N and, thus, a jump of the FISDW wave vector
(3) corresponding to the first order (N = 2) — (N = 1)
FISDW phase transition (we call such FISDW phases the
“quantum FISDW” ones). On the other hand, at 4 = 1 and
0.8 the above-mentioned jump does not exist anymore and,
thus, the first order (N = 2) — (N = 1) FISDW phase
transition disappears (we call such FISDW phases the
“quasiclassical FISDW” ones) [see Figs. 2(b) and 2(c)].
Nevertheless, we stress that even at 4~ = 1 and 0.8 the
FISDW wave vector (3) still exhibits a very peculiar behav-
ior. A detailed study of the quasiclassical FISDW states,
including a possibility of the existence of some phase tran-
sitions or crossovers between them, is not a subject of
our Letter, and the corresponding results will be published
elsewhere [28]. We also stress that there is another variant
[1,19] of the QN model which accounts for the possible
changes in a perpendicular component of the wave vector,
Q,(H), with changing magnetic field. Its main predictions
are the same as the predictions of the QN model consid-
ered in the Letter: the existence of a cascade of the FISDW
first order phase transitions and the 3D QHE due to a simi-
lar quantization rule for a longitudinal projection of the
FISDW wave vector:

Qy = [2pr + Now(H)/vr, Qy(H), 7/c"]. (10)
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FIG. 2. (a) As shown in the Letter, N [see Eq. (3)] exhibits a
noninteger jump at & > hl2. (b) At h = h!? = 1 the jump of
N first disappears. (c) Although at 7 < h!? the jump does not
exist anymore; nevertheless, the value of N is still a nontrivial
function of 1/H.

We point out that the quantization rules (10) and (3) have
been theoretically proved only in the limiting case where
[7Trispw(N, H)]/ w.(H) — 0. Although a detailed study
of the model [19] is not a subject of the Letter, our pre-
liminary results [28] show that the qualitative statements
of the Letter are retained in the model [19]. For ex-
ample, at [7Trispw(N, H)/ w.(H)] = 1, the minimum of
the free energy in model [19] corresponds to a noninteger
N = 0.53 [28]. Thus, we conclude that both quantization
rules (3) and (10) are not strictly valid at finite transition
temperatures, 7 Trispw(N, H)/w (H) # 0.

Below, we compare our results with the classical
[6,7] and recent [29] experiments on a compound
(TMTSF),PF. If one takes the experimental estimation of
vrp = 107 cm/sec [30], one obtains the following estima-
tion of the parameter h: hy, = w.(H)/[#mTrspw(H)] =
1. Thus, one may expect that the FISDW phase diagrams
in (TMTSF),PFs [6,7,29] consist of two regions: the
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quantum FISDW and quasiclassical FISDW. Indeed, as
mentioned in Ref. [6], hysteresis characterizing the first
order FISDW phase transitions disappears at temperatures
lower than the metal-FISDW transition temperature,
Trispw(H,N). In a very recent paper [29], this problem
is studied in detail, and the line where the hysteresis
disappears is shown to subdivide the FISDW diagram into
two different areas. In Ref. [7], it is shown that the peaks
of a resistivity determining the FISDW phase transitions
disappear well below Tgispw(H,N). Therefore, we
summarize that the experiments [6,7,29] are in agreement
with the analysis suggested in the Letter (see Figs. 1 and
2) and are in a qualitative disagreement with the results of
the QN model [15-24] [see Fig. 1(a)].

In conclusion, we point out that, in our opinion, the tem-
perature dependences of the 3D QHE plateaus measured
in Ref. [7] and discussed in Ref. [31] have peculiarities on
some lines inside the FISDW phase diagram. We specu-
late that the 3D QHE exists only in the quantum FISDW
phases and disappears in the quasiclassical FISDW states,
although this problem has to be carefully studied both theo-
retically and experimentally. We stress that the improve-
ment of the existing theoretical descriptions of the FISDW
phases suggested in the Letter gives rise to a discussion
about the physical nature of the 3D QHE since its current
descriptions [20—24] are based on a hypothesis that the
parameter N is an integer topological number which is not
the case, as shown in the Letter. We also expect that such
physical properties as a nonlinear FISDW conductivity and
“magic angle” phenomenon are different in the quantum
FISDW and quasiclassical FISDW phases (see Fig. 1) and
suggest to prove these experimentally.
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