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It is shown that in resistive nanowires out of equilibrium containing either single- or two-channel
Kondo impurities the distribution function f�E, U� obeys scaling behavior in terms of the quasiparticle
energy E and the bias voltage U . The numerically calculated f�E, U� curves explain quantitatively recent
experiments on Cu and Au nanowires. The systematics of the impurity concentration cimp extracted from
the comparison between theory and results on various Cu and Au samples strongly suggests that in these
systems the scaling arises from magnetic Kondo impurities.

DOI: 10.1103/PhysRevLett.88.176803 PACS numbers: 73.63.Nm, 72.10.Fk, 72.15.Lh, 72.15.Qm
While electronic interactions in solids are usually in-
vestigated by equilibrium probes like linear response or
spectroscopic measurements, the shape of the nonequi-
librium distribution function fx�E, U� of quasiparticles
(qp) with energy E at a position x in a mesoscopic wire
is sensitive to extremely weak interaction effects. This
is so because fx �E, U� is not influenced by the large
elastic scattering background, and has been demon-
strated by the Saclay group in an important series of
experiments [1,2], where controlled nonequilibrium was
established by a finite transport voltage U. In resistive
Cu and Au wires the theoretically expected double-step
form of fx�E, U� [3] was found to be rounded such
that it obeys the scaling property fx�E, U� � fx�E�eU�,
when U exceeds a certain energy scale [1,2]. By a
phenomenological analysis, the origin of the scaling
was traced back to an anomalous electron-electron
interaction y�v� which scales with the energy transfer
v as y�v� ~ 1�v [1]. It means that in 2nd order
perturbation theory (PT) the resulting qp relaxation rate
would not vanish at the Fermi energy EF [1]. One
can, therefore, conjecture that the anomalous scaling
form fx�E�eU� and the apparent low-temperature
saturation of the dephasing time observed [4] in the
magnetoresistance of nanowires might have the same
microscopic origin. To substantiate this speculation, a
quantitative calculation in nonequilibrium is needed, and
the perturbative infrared singularity of y�v� signals that
one has to go beyond finite order PT.

The scaling of the interaction y�v� ~ 1�v implies, in
particular, that it has no essential momentum dependence,
i.e., should be of local origin. Anomalous low-energy be-
havior of local origin can be induced by the Fermi surface
singularities characteristic for Kondo type systems [5,6].
Based on such considerations, the single-channel Kondo
(1CK) [7] and the two-channel Kondo (2CK) effect [8],
possibly produced by degenerate dynamical defects [6],
have been proposed as the origin of the anomalous energy
relaxation. Inelastic scattering by Kondo impurities was
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considered before in Ref. [9]. In this Letter we show that
a very small concentration cimp of Kondo impurities leads
to the observed scaling behavior of fx�E, U�, when eU
exceeds an intrinsic energy scale eUc which is essentially
equal to the Kondo temperature TK . In contrast to the treat-
ment of Ref. [10], we include both vertex renormalization
and finite lifetime effects in nonequilibrium. The numeri-
cal results are in excellent quantitative agreement with the
experimental curves [1,2], with cimp the only adjustable
parameter of the theory. A detailed analysis suggests that
the scaling behavior in Cu and Au wires is due to magnetic
(1CK) impurities.

Model and formalism.—We consider fx�E, U� in a
resistive nanowire of length L, subject to the bound-
ary conditions that the left �x � 0� and the right
�x � L� leads are in equilibrium at their respec-
tive chemical potentials, i.e., fx�0�E, U� � f0�E�,
fx�L�E, U� � f0�E 1 eU�, with f0�E� � 1��eE�T 1 1�
the Fermi distribution �kB � 1�. The lesser �,� and
the greater �.� conduction electron Keldysh Green’s
functions read G,

x � �p, E� � 22pifx� �p�ImGr
x � �p, E� and

G.
x � �p, E� � 2pi�1 2 fx� �p��ImGr

x � �p, E�, respectively,
where E, �p denote qp energy and momentum. A super-
script r indicates a retarded propagator. In a disordered
electron system with diffusion constant D the stationary
quantum Boltzmann equation for the distribution as
function of E takes the diffusive form [3]

2D=2
xfx�E, U� � C � fx�E, U�� . (1)

The collision integral C is expressed in terms of the self-
energies S_ for scattering into �,� and out of �.� states
with given energy E as (No � density of states per spin)

C �
1

2pNo

X
p

�S,
x �E�G.

x � �p, E� 2 S.
x �E�G,

x � �p, E�� .

(2)

In the absence of any interactions [C � 0 in Eq. (1)] the
distribution function has the double-step shape,

fx�E, U� �
x
L

f0�E 1 eU� 1

µ
1 2

x
L

∂
f0�E� . (3)
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For a small concentration of Kondo defects cimp, in
addition to the static impurities, the conduction electron
self-energy is given in terms of the single-particle t
matrix of the defect, t_

x �E�, as S_
x � cimpt_

x . The elastic
scattering parts of t_

x �E� cancel each other exactly in C .
We emphasize that, apart from the assumption of small
cimp, the present formulation, Eqs. (1) and (2), contains
no approximations, once the t matrix is known.

As pointed out in Ref. [1], the precise energy depen-
dence of the kernel of the collision integral [and hence
of t_

x �E�] is crucial for whether or not fx�E, U� obeys a
nonequilibrium scaling property, but has been notoriously
difficult to calculate for the Kondo problem. Therefore we
use the slave boson (SB) formalism, where certain exact
properties of the auxiliary particle propagators are known
[11–13]. The magnetic impurity is described by the An-
derson model in the Kondo limit, i.e., by a low-lying local
level ´d with infinite on-site Coulomb repulsion, coupled
to the conduction electron sea via a hybridization V ,

H � Ho 1 ´d

X
s

fy
sfs 1 V

X
p,s

� fy
sbcps 1 H.c.� .

(4)

Ho �
P

�p,s ´pc
y
�psc �ps describes the conduction band.

The auxiliary fermion and boson operators, fy
s , by,

create the impurity in its quantum state with spin
s � 61�2 (spin degeneracy N � 2) or in the unoc-
cupied state, respectively. Their dynamics are subject
to the operator constraint Q̂ �

P
s fy

sfs 1 byb � 1.
The equilibrium Kondo temperature of the model is
TK 	 EF

p
�NNoJ� e21��NNoJ�, with J � jV j2�j´dj the

effective spin exchange coupling. The bare auxiliary
particle propagators read G

r�0�
f �v� � 1��v 1 i0� and

G
r�0�
b �v� � 1��v 1 ´d 1 i0�. Here we have gauged

the zero of the slave particle energy such that the pole
of Gr

f �v� is at v � 0. The numerical evaluations will
be done within the noncrossing approximation (NCA)
which is shown diagrammatically in Fig. 1(a). The

=f

c)

Σ

b)

1 2
+

a)

Σb=

1

3

2

4

V 2t =

1

3

2

4

FIG. 1. (a) Diagrammatic representation of the NCA
Eqs. (5)– (7). Solid, dashed, and wiggly lines denote the
conduction electron, the renormalized local spin and auxiliary
boson propagators, respectively. (b) Leading contribution to the
inelastic spin relaxation rate 1�ts . (c) Expansion of the NCA
single-particle t-matrix t into bare PT contributions (points 3
and 4 connected) to show that it includes the electron-electron
vertex of O�J3� and O�J4�.
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corresponding equations for the auxiliary fermion and
boson self-energies S

_
f , S

_
b in nonequilibrium read [14]

S_
f �

G_
f �v�

jGr
f �v�j2

� 7
G

No

Z d´

2pi
G_

x �2´�G_
b �v 1 ´� ,

(5)

S_
b �

G_
b �v�

jGr
b�v�j2

� 6
NG

No

Z d´

2pi
G+

x �´�G_
f �v 1 ´� ,

(6)

where G � pNo jV j2 is the effective hybridization,
and G_

x �´� �
P

p G_
x � �p, ´�. This set of self-consistent,

nonlinear equations is closed by the Kramers-Kroenig rela-
tions, Gr

f,b�v� � 2
R

d´��2pi�G,
f,b �v���v 2 ´ 1 i0�,

which follow from causality and the fact that the auxiliary
particle Green’s functions have only forward in time propa-
gating parts. Within NCA the single-electron t-matrix due
to the Kondo impurity is

t_
x �E� � 6

G

pNo

Z d´

2pi
G_

f �E 1 ´�G+
b �´� . (7)

Analytical analysis.— In order to understand how scal-
ing of fx�E, U� in nonequilibrium arises, it is instructive
to discuss the solutions of Eqs. (5)–(7) analytically for a
single impurity. The PT for the Kondo model can be devel-
oped economically by identifying jV j2G

r�0�
b �v 
 0� � J

within the SB representation, where Wick’s theorem is
preserved.

We first discuss the crossover bias eUc above which
the system becomes dominated by incoherent processes as
well as the corresponding nonequilibrium spin relaxation
rate 1�ts. As seen below, the energy dependence of 1�ts

is crucial for the scaling behavior of fx�E, U�, while eUc

sets a lower bound for the voltage range in which scaling
is obeyed. At finite bias the breakdown scale of PT, T �,
definied in analogy to the equilibrium TK , is suppressed
compared to TK , e.g., for x�L � 1�2,

T � �
q

�eU�2�2 1 T 2
K 2 eU�2

eU¿TK	
T2

K

eU
. (8)

At an arbitrary position x�L, for eU ¿ TK , we have T� �

T
1�h
K ��eU��1�h�21, where h � max�x�L, 1 2 x�L�. The

inelastic spin relaxation rate 1�ts arises, because in the
nonequilibrium electron sea [Eq. (3)] there is finite phase
space available for scattering even at T � 0. Technically,
this relaxation rate appears as the imaginary part of the
pseudofermion self-energy, S

r
f�v � 0�, which carries the

local spin degree of freedom. To leading order in J it
is obtained by inserting the bare propagators G

_�0�
f,b in the

diagram Fig. 1(b),

1
ts

� 2pMN
x

L

µ
1 2

x

L

∂
�NoJ�2eU . (9)

This is analogous to the well-known Korringa spin relax-
ation rate [5], with T replaced by eU. However, the log
terms appearing in higher order PT must be resummed,
as is done in NCA through self-consistency. Solving
Eqs. (5) and (6) in the complete range of validity of NCA,
176803-2
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TK & eU ø EF , we find that due to the resummation
1�ts depends on eU and TK only,

1
ts

�
x
L

µ
1 2

x
L

∂
HN

µ
eU
TK

∂
eU , (10)

where HN is a universal function with HN � y� !
p��2N ln2� y�� for y ¿ 1 [15], in accordance with
Ref. [7]. Inserting 1�ts into the pseudoparticle propaga-
tors, it cuts off all logarithmic contributions of PT. Thus,
the low-T scale of the nonequilibrium Kondo system
is To � max�T ��eU�, 1�2ts�eU��. The crossover from
the Kondo [Eq. (8)] limited lifetime of the local spin to
the inelastic time [Eq. (10)] occurs as a function of eU
at a bias eUc. It follows from the universality of 1�ts,
Eq. (10), and of T�, Eq. (8), that eUc is only a function of
TK and, hence, for dimensional reasons, eUc � ATK . We
find numerically that A � 1.48 6 0.08, i.e., the finite bias
crossover scale is eUc 
 TK itself, and nonequilibrium
does not introduce a new energy scale. For eU * 10TK

one finds with good accuracy 1�ts ~ eU, when eU is
varied by a factor of �4, wherein the eU dependence of
the log terms in Eq. (10) is weak. To investigate scaling
of fx�E, U� one must incorporate inelastic processes in
the conduction electron t-matrix t_

x �E�. To lowest order,
these enter in t_

x �E� in O�J4� through the imaginary part
of the O�J2� self-energy insertion for the pseudofermion
(local spin) propagator [Fig. 1(c), third diagram, with
points 3 and 4 connected]. This term is included in NCA,
as seen by expanding the self-consistent NCA term in
bare PT [Fig. 1(c)]. Its evaluation yields the 1�E2 energy
dependence of the electron-electron vertex required for
scaling [1], in agreement with Ref. [7]. However, in
higher order PT lifetime corrections as well as vertex
renormalizations occur. In order to capture these beyond
finite-order PT, we must consider the exact energy depen-
176803-3
dence of the pseudoparticle Green’s functions G_
f,b�v�.

It is known that in equilibrium at T � 0 it is determined
by an exponential series of logarithms which results
in power law behavior, G_

f �v� ~ 7iQ�6v� jvj2af ,
G_

b �v� ~ 7iQ�6v� jvj2ab , for v & TK . The expo-
nents af , ab are due to an orthogonality catastrophe in
the auxiliary propagators and have characteristic values,
with af � ab � 1�2 in the Kondo limit [12,13]. We
can exploit this knowledge to determine the frequency
dependence of G_

f,b�v� away from equilibrium. At
finite bias eU ¿ TK this series consists of similar terms
as in equilibrium, however, with three modifications:
(i) Because of the inelastic relaxation rate 1�ts � 2g
all frequency arguments are shifted, v ! v 1 ig.
(ii) Gf�v� has a singularity at v � 0 1 ig, but there
are two singularities in G_

b �v� at v � 0 1 ibg and at
v � eU 1 ibg, where b is a numerical factor. (iii) In
any frequency integral involving G_

b �´ 1 v�, as, e.g.,
in Eq. (5), each of the two singularities in G_

b gives a
singular contribution at the external frequency v � 0.
Points (i)–(iii) can, e.g., be verified by iterating Eqs. (5)
and (6), starting from the bare propagators G

_�0�
f,b . Hence,

we obtain damped power law behavior,

G.
f �v�

1 2 fx�v, U�
~

1
i

Im
i

�v 1 ig�a
0
f

G.
b �v�

1 2 fx�v, U�
~

1
i

Im

"
i�1 2 x�L�

�v 1 ibg�a
0
b

1
i�x�L�

�v 2 eU 1 ibg�a 0
b

#
,

(11)

with log corrections whose size depends on x�L, and
which vanish in the limit eU ¿ TK . The exponents
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FIG. 2. Nonequilibrium distribution functions for various Cu and Au samples. Black lines: experimental results; Cu: [1], Au: [2].
Open circles: theory for eU ¿ TK . Deviations from scaling at smaller eU [1] are also reproduced by the theory (not shown). Fitted
cimp values are indicated. The insets show the difference between the experimental and the theoretical curves.
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resulting from the NCA resummation [13] are in the
nonequilibrium situation a

0
f � 2��2 1 N�, a

0
b �

N��2 1 N�. Note that these values are reproduced in
arbitrary (finite) order of self-consistent PT beyond NCA
[13], and that for eU . TK a summation to infinite order
of self-consistent PT cannot introduce new singularities
because of the inelastic rate 1�ts. The v dependence
Eq. (11) extends from v � 0 up to the smallest energy
scale of the model, i.e., for eU . TK up to v � eU, since
in this case TK is irrelevant. For x�L ! 0 or x�L ! 1
the solution crosses over to the equilibrium one. This
behavior is confirmed by our numerical NCA solutions.
We note in passing that the nonequilibrium exponents
a

0
f , a

0
b are reminiscent of the 2CK problem [6,13]. 2CK

strong coupling behavior induced by finite bias has been
suggested in Ref. [16]; see, however, [17]. In contrast,
the NCA resummation, leading to a

0
f , a0

b above, is valid
only in the region eU * TK where strong coupling be-
havior is not realized because of the nonequilibrium spin
decoherence rate 1�ts 
 O�eU� [15]. We are interested
in scaling at large bias �eU ¿ TK�. Inserting the power
law forms Eq. (11) into Eqs. (5)–(7), dividing Eq. (5)
by �eU�a0

f and Eq. (6) by �eU�a 0
b , and using the exact

result a
0
f 1 a

0
b � 1, it is seen that the NCA equations

contain only dimensionless energies, ´�eU, etc. Power
counting arguments [13] show that this is reproduced
in arbitrary self-consistent order in G beyond NCA. In
the presence of a finite concentration cimp, fx�E,U� is
determined by the self-consistent coupled set of Eqs. (1),
(2), and (5)–(7). It follows that the solution obeys scal-
ing, fx�E, U� � fx�E�eU�, when the log corrections to
Eqs. (11), as well as to (9), are small, i.e., for eU ¿ TK .

Comparison with experiment.— Our numerical solutions
show scaling within a factor of 4 to 9 in eU, depend-
ing on parameters. Note that the power law behavior
Eq. (11) and the fact that the low-energy cutoff 1�ts it-
self is proportional to eU, i.e., both vertex renormaliza-
tions and self-energy corrections, cooperate to produce
scaling. For eU & 10TK we find deviations from scal-
ing. This provides for T ø TK a rough estimate, and
for T . TK an upper bound on TK ; in the experiments
[1,2] T & TK ø eU. For the numerical evaluations we
assume magnetic (1CK) impurities (for eU * TK , 2CK
impurities give very similar results) and take TK 
 0.1 K
in Cu and TK 
 0.5 K in Au wires, consistent with the
above estimate and with independent estimates of TK for
these samples [2]. After TK is fixed, cimp is the only ad-
justable parameter of the theory. The results for fx�E, U�,
as measured by a tunnel junction attached to the wire, are
shown in Fig. 2. Excellent quantitative agreement with ex-
periments [1,2] is obtained for all samples. In Au wires the
fitted values of cimp are consistent with (although some-
what higher than) independent estimates of the magnetic
impurity concentration [2], considering the roughness of
both estimates. This suggets that the scaling behavior of
fx�E, U� in the Au samples is due to magnetic (1CK) im-
purities. Furthermore, in all Cu samples the fitted cimp is
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systematically about 102 times smaller than in Au. This
systematics is in accordance with cimp estimated from the
plateau in the T dependence of the dephasing time tw in
similarly prepared samples [2,18].

Conclusion.—We have shown that single- or two-
channel Kondo impurities in quantum nanowires induce
scaling behavior of the nonequilibrium distribution func-
tion fx�E, U� at a bias eU exceeding an energy scale
eUc 
 TK . The results give a detailed explanation of
related experiments. In the small bias or strong coupling
regime �eU , TK�, 1CK and 2CK impurities must show
qualitatively different behavior, as the former become
potential scatterers with frozen spin dynamics, contrary to
the latter with (ideally) nonzero entropy at T � 0. The
quantitative comparison between the present theory and
experiments suggests that in Au and at least partially in
Cu nanowires both the scaling of fx�E, U� [1,2] and the
plateau in the low-T dephasing time tw [18] are due to
magnetic Kondo impurities. A unique test for magnetic
impurities is measuring fx�E,U� in a magnetic field [19].
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