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Pinch-off and scaling during drop formation are studied using high-accuracy computation and ultrafast,
high-resolution imaging. The interface of a water drop (viscosity m � 1 cP) is shown to overturn prior
to breakup for the first time in experiments, well before the dynamics transitions from the potential
flow (PF) to the inertial-viscous (IV) regime. A drop of 83% glycerol-water solution �m � 85 cP� is
shown to exhibit a transition from the PF to the IV regime both computationally and experimentally.
The computed value of the minimum neck radius in the latter case follows Eggers’s universal solution
until it becomes unstable.
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Drop formation is of great practical interest because
of its prevalence in applications [1,2]. Moreover, drop
breakup is of great scientific interest due to the richness
of the underlying physics. First, drop breakup exhibits oc-
currence of finite time singularities. Second, the dynamics
both spatially and temporally in the vicinity of pinch-off
exhibits self-similar behavior due to the large, i.e., or-
ders of magnitude, disparity between local length and time
scales and corresponding global scales. Keller and Mik-
sis [3] first proposed a scaling theory describing the self-
similar recoil of a liquid sheet upon its rupture. Since
this pioneering study, a number of authors have developed
scaling theories to describe rupture of liquid threads sur-
rounded by a dynamically inactive fluid. These include
rupture of a thread in which (a) inertia, viscosity, and cap-
illarity [4], (b) inertia and capillarity [5], and (c) viscos-
ity and capillarity [6] are important. These regimes are,
respectively, referred to as inertial-viscous (IV), potential
flow (PF), and viscous (V) thread regimes [7]. As a thread
of a low (high) viscosity fluid initially thins according to
the PF (V) scaling law, viscous (inertial) forces eventually
become important so that the dynamics ultimately follows
the IV scaling law so long as the effect of the outer fluid
may be neglected [7].

Since self-similar behavior is observed asymptotically
near pinch-off, it is of considerable scientific interest to ex-
amine through both solution of the full Navier-Stokes (NS)
equations and experiment how such asymptotic states are
approached. However, detailed understanding of pinch-off
is not just a scientific curiosity; rupture dictates dynam-
ics beyond pinch-off. For an algorithm that solves the
NS equations —a NS solver —to remain true to physics,
it must accord with scaling laws and experimental mea-
surements made near pinch-off. This Letter presents the
first combined computational and experimental study of
pinch-off which uses a NS solver. Two situations are con-
sidered: (a) a low-viscosity liquid where the drop surface
overturns before pinch-off, which is a challenge to both
computation and experiment, and (b) a more viscous liquid
where the dynamics exhibits a transition from one scaling
regime to another.
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The challenge to both computation and experiment in
studying drop breakup is that length (time) scales may
range between cm (s) and mm �ms�. To date, most com-
putations capable of accurate description of pinch-off have
relied on approximations to the NS equations. These have
modeled the dynamics by one-dimensional (1D), slender-
jet analysis [8,9] (see [6] and [10] for other derivations of
1D equations), boundary element (BE) analysis of invis-
cid, irrotational flow [5], and BE analysis of Stokes flow
[7]. Yildirim and Basaran [11] have used 1D equations to
demonstrate change of scaling. Notz et al. [12] have used
a NS solver to show, albeit without experimental verifica-
tion, change of scaling as pinch-off nears.

Experimental studies of pinch-off are also challenging
owing to the need to resolve small length and short time
scales. To study dynamics of fine features such as mi-
crothreads, Henderson et al. [13] have used a camera cap-
able of interframe times of 83 ms, exposure times of
10 ms, and spatial resolutions of 15.5 mm�pixel and
Kowalewski [14] has used a camera capable of inter-
frame times of 5.5 ms, exposure times of 200 ns, and
spatial resolutions of 2.9 mm�pixel. Change of scaling
has only been demonstrated experimentally by Rothert
et al. [15], who have shown transition from the V to the IV
regime.

In this Letter, the formation of an incompressible
Newtonian liquid from a tube at constant flowrate Q is
analyzed computationally by solving the NS equations
using the Galerkin/finite element method (G/FEM)
[12,16] with elliptic mesh generation [12,17]. The NS
equations are nondimensionalized using tube radius R
and capillary time tc �

p
rR3�s, where r is density and

s is surface tension, as characteristic length and time
scales. Using these scales, the following dimensionless
groups arise: Ohnesorge number Oh � m�

p
rRs, where

m is viscosity; Bond number G � rgR2�s, where g is
the gravitational acceleration; and Weber number We �
rQ2��p2sR3�. As shown in [7], dynamics of the outer
fluid can be neglected until the dimensionless minimum
radius of the thinning neck hmin � mOh2, where m is the
ratio of the viscosity of the outer fluid to that of the drop.
© 2002 The American Physical Society 174501-1
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In the experiments, images are obtained using a
Cordin 220-8 imager that can capture up to 108 frames�s
and is coupled to a Questar QM100 lens. Liquid is fed by
a syringe pump to a tube of R � 0.36 cm whose outlet
is sharpened to ensure a fixed contact line. Recording of
images is triggered when a growing drop interrupts a laser
beam. The liquids used are water with r � 0.997 g�cm3,
m � 0.913 cp, and s � 70.6 dyn�cm, and a solution of
83 wt% glycerol in water (henceforward referred to as 83%
glycerol) with r � 1.21 g�cm3, m � 85.4 cp, and s �
63.1 dyn�cm. The values of the dimensionless groups
for water are Oh � 1.81 3 1023, G � 1.80, and We �
1.36 3 1026 and those for 83% glycerol are Oh �
1.63 3 1021, G � 2.45, and We � 4.61 3 1027. Spa-
tial resolution in the images to be reported are 1.7 mm�
pixel, interframe times are 5 100 ms, and exposure times
are 200 ns.

Figure 1(a) shows the computed global shape and
Fig. 1(b) shows a blowup of the same shape in the vicinity
of hmin for a water drop at the incipience of pinch-off.
The computed global and zoomed-in views of an 83%
glycerol drop at the incipience of pinch-off are shown in
Figs. 1(c) and 1(d). Computations reported have been
made using 4809 mesh points along the drop surface
and 350 000 unknowns, and therefore involve an order of
magnitude finer resolution than those of Wilkes et al. [16].
Predictions of global quantities such as limiting lengths
and volumes of drops at breakup by the NS solver used
here are within 1% of experimental measurements and
previous G/FEM computations [16]. Demonstrating the
accuracy of the present NS solver in predicting local
dynamics is a major goal of this paper.

Figure 1(b) shows that the computed shape of the water
drop is highly overturned prior to pinch-off. Overturning
in the presence of viscosity has only been shown computa-
tionally in [16] during drop formation and experimentally
in [18] during rupture of a soap film. Figure 2(a) shows
the computed profile of a water drop overlaid on an experi-
mental image when the interface has just begun to overturn

FIG. 1. Computed shapes of water, (a),(b), and 83% glyc-
erol, (c),(d), drops at the incipience of pinch-off. Here (a) and
(c) show the global shapes and (b) and (d) show their blowups
in the vicinity of hmin. For the water drop, hmin � 2 3 1023,
and for the 83% glycerol drop, hmin � 1 3 1023.
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and demonstrates the excellent agreement between compu-
tations and experiments. The excellent agreement between
the two persists to pinch-off. Figure 2(b) shows a view
of the water drop at a later time than that in Fig. 2(a) and
makes plain for the first time that the interface is overturned
in the experiments. Overturning cannot be predicted by 1D
models.

The blowup of the computed profile of an 83% glyc-
erol drop depicted in Fig. 1(d) clearly shows the forma-
tion of a microthread from the primary thread, in accord
with previous experiments [9,13,14]. Figure 2(c) shows
the computed profile of this drop overlaid on an experi-
mental image when hmin � 7.6 3 1023. Once again, the
agreement between computations and experiments is ex-
cellent. Figure 2(d) shows a close-up experimental image
of the microthread a few ms prior to rupture when its ra-
dius is on the order of 1 2 mm.

Further quantitative comparisons between computa-
tions, experiments, and scaling theories can be made by
(a) examining the variation of hmin with time to breakup
t � tb 2 t, where t is time and tb is the breakup time,
and (b) demonstrating the collapse of appropriately scaled
drop profiles, viz. h�z, t� where h is the interface shape
function and z is the axial coordinate, onto similarity
solutions [4–6]. Figure 3 shows the variation of com-
puted and experimentally measured values of hmin with
t for water. Since Oh ø 1 in this situation, it is ex-
pected that the dynamics would follow PF scaling theory,
where hmin � t2�3, once hmin becomes sufficiently small

FIG. 2. (a) Computed profile of a water drop, dark curve,
overlaid on an experimental image when hmin � 1.2 3 1022

�43 mm�. (b) Experimental image of the same water drop a
short time later showing a highly overturned interface. (c) Com-
puted profile of an 83% glycerol drop, dark curve, overlaid
on an experimental image when hmin � 7.6 3 1023 �27 mm�.
(d) Experimental image of the same 83% glycerol drop a short
time later when the thickness of the microthread is a few mm.
The scale bar shown in (b) applies to (a)–(d).
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FIG. 3. Variation of computed and experimentally measured
values of hmin with t for water. Also shown are the PF scal-
ing law, hmin � t2�3, and the value of hmin when the interface
overturns (overturning limit).

[7]. Figure 3 shows that this is indeed the case when
hmin � 2 3 1022. Figure 3 also shows that shortly there-
after, when hmin � 1.3 3 1022, the interface of the
drop overturns. Once hmin falls below 1022 �36 mm�,
it becomes difficult to acquire experimental data due to
overturning. However, Fig. 3 shows that the computations
coincide with the PF scaling result even for values of hmin
as small as 1023. Figure 3 shows that experimental mea-
surements and computational predictions are in excellent
agreement until the overturning limit.

Figure 4 shows the variation of computed scaled drop
profiles h�hmin as a function of scaled axial coordinate
�z 2 zmin��hmin, where zmin is the axial coordinate where
h � hmin, for the water drop as it is breaking. This figure
makes plain that the scaled profiles indeed exhibit self-
similarity and that the extent of the spatial coordinates
over which the scaled computed solutions collapse onto
the similarity solution increases as the neck thins.

The results depicted in Figs. 3 and 4 show that self-
similarity and scaling as per PF scaling theory are still ob-
served for values of hmin an order of magnitude smaller
than that at the onset of overturning, viz. hmin � 1.3 3
1022. Such results have important ramifications for analy-
ses of breakup carried out by 1D algorithms. Indeed, the
present results may at last explain the surprising break-
down of scaling reported in [19]. The transition from PF
to IV scaling is expected to occur when hmin � Oh2 [7].
For the water drop considered here, the transition from
PF to IV scaling would occur when hmin � 3.3 3 1026

(12 nm) and the dynamics of the outer fluid would come
into play once hmin � 3.3 3 1029.

Figure 5 shows the variation of computed and experi-
mentally measured values of hmin with t for 83% glyc-
erol. Figure 5 shows that the dynamics initially follows
174501-3
(z-zmin)/hmin

h/
h m

in

-20 -10 0

0

5

10

15

20

25

30

hmin→ 0

hmin=3.58x10-2

hmin=1.75x10-2

hmin=2.21x10-3

hmin=7.09x10-2

hmin=4.45x10-3
hmin=8.76x10-3

FIG. 4. Variation of computed scaled drop profiles h�hmin with
scaled axial coordinate �z 2 zmin��hmin for the water drop as
it approaches pinch-off and the scaled shapes tend to the PF
similarity solution.

PF scaling theory, a finding that accords with intuition be-
cause Oh , 1. Further, Fig. 5 shows that as hmin contin-
ues to decrease, the dynamics transitions to the IV regime,
where hmin � t [4]. Figure 5 highlights that computa-
tions and experiments are in excellent agreement with each
other over roughly 2 orders of magnitude in hmin and that
this is the first time that transition in scaling from the
PF to the IV regime has been shown experimentally. As
hmin continues to decrease, Fig. 5 shows that the computed
thinning of the neck follows Eggers’s universal solution
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FIG. 5. Variation of computed and experimentally measured
values of hmin with t for 83% glycerol. For large t, both fol-
low the PF scaling law, hmin � t2�3, and then transition to the
IV scaling regime where Eggers’s universal solution, hmin �
0.0304tOh21, holds. The horizontal line shows when hmin
equals the dimensionless viscous length or Oh2.
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for which hmin � 0.0304tOh21. By this time thread ra-
dius has become too small to measure experimentally and
one must rely on computations to confirm Eggers’s solu-
tion. As in Fig. 4, one can plot (not shown) the varia-
tion of computed scaled drop profiles h�hmin as a function
of scaled axial coordinate �z 2 zmin��hmin for the 83%
glycerol drop as the neck thins but hmin remains large
enough that Eggers’s universal solution is not observed.
Such a plot shows that the shapes are self-similar only
over a short time �1.2 3 1022 , hmin , �2.5 3 1022

and then move away from the PF similarity solution as
viscous effects become locally important, in accord with
results showing change of scaling from the PF to the IV
regime in Fig. 5. Figure 6 shows the variation of com-
puted scaled drop profiles h�hmin as a function of scaled
axial coordinate �z 2 zmin�t1�2�hmin for the 83% glycerol
drop as it approaches pinch-off. This figure shows that the
scaled profiles exhibit self-similarity as hmin, t ! 0 and
approach Eggers’s asymmetric, self-similar profile for an
IV thread. Calculations have been made for values of hmin
smaller than those shown in Figs. 5 and 6. They reveal
that Eggers’s universal solution becomes unstable as blobs
form on the surface of the microthread, in accord with
previous works [4,19–21]. For 83% glycerol, the tran-
sition from the PF to the IV regime is expected to occur
when hmin � 2.7 3 1022 �96 mm� and the dynamics of
the outer fluid would come into play once hmin � 3.1 3

1027.
The results of this Letter show that the new NS solver

has unprecedented accuracy: its predictions accord with
both experiments and scaling theories over length scales
ranging from cm to mm. NS solvers of others that use
the G/FEM method have failed to show overturning [22].
NS solvers that are designed for a rougher description of

τ1/2 (z-zmin)/hmin

h
/h

m
in

-15 -10 -5 0

0

5

10

15

hmin→ 0

hmin=1.56x10-2

hmin=5.58x10-4

hmin=3.97x10-3

hmin=2.00x10-3

hmin=1.00x10-3

hmin=8.16x10-3

FIG. 6. Variation of computed scaled drop profiles h�hmin as a
function of scaled axial coordinate �z 2 zmin�t1�2�hmin for the
83% glycerol drop as it approaches pinch-off and the scaled
shapes tend to the IV similarity solution.
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complicated free surface flows [23,24] would not be able
to capture details presented here. Computations are shown
to provide valuable insights into phenomena when experi-
ments are no longer useful. They reveal that there is no
breakdown of scaling [19] even after the interface of a wa-
ter drop overturns. Computations with the NS solver also
show that Eggers’s universal solution can be observed, at
least in a transitional manner, in certain situations. Given
the accuracy of the NS solver, it can be used with confi-
dence in situations where the state of understanding from
scaling theories and experiments may be incomplete as in
liquid-liquid pinch-off [7,25].
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