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Sudden Collapse of a Granular Cluster

Devaraj van der Meer, Ko van der Weele, and Detlef Lohse
Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands
(Received 6 July 2001; revised manuscript received 26 November 2001; published 15 April 2002)

Single clusters in a vibro-fluidized granular gas in N connected compartments become unstable at
strong shaking. They are experimentally shown to collapse very abruptly. The observed cluster lifetime
(as a function of the driving intensity) is analytically calculated within a flux model, making use of the
self-similarity of the process. After collapse, the cluster diffuses out into the uniform distribution in a
self-similar way, with an anomalous diffusion exponent 1�3.
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One of the key features of a granular gas, making it fun-
damentally different from ordinary molecular gases, is its
tendency to spontaneously separate into dense and dilute
regions [1]. This clustering originates from the dissipative
nature of the particle collisions. It is an unwanted effect in
many applications where granular material is brought into
motion. Therefore we study (within a simple geometry)
how declustering occurs. We find that the breakdown of a
cluster can be very abrupt, making declustering very dif-
ferent from clustering in reverse time order.

The experimental system (see Fig. 1) consists of a row
of N equal compartments, separated by walls of height
h � 25.0 mm and filled with a few hundred steel beads of
diameter 3.0 mm. We start out with all the particles in the
middle compartment and bring them into a gaseous state
by shaking the system vertically. For weak shaking the
cluster is stable: after some initial spilling, a dynamical
equilibrium is established between the outflux of slow par-
ticles from the cluster and the influx of fast particles from
outside [2–4]. For sufficiently strong shaking, however,
the cluster breaks down.

Two different regimes are observed: (i) At very strong
shaking the breakdown occurs immediately, and the cluster
spreads out over the boxes with its profile widening as t1�3

(instead of the standard t1�2 diffusion law). (ii) At less
violent shaking, the cluster seems to remain stable for a
long time, showing only a small leakage to its neighbors.
But suddenly it collapses and subsequently diffuses over
all boxes. The sudden death of the cluster is depicted in
Fig. 1.

One thing this figure shows is that the breakdown of a
cluster is strikingly different from the reverse process of
cluster formation, which is known to take place gradually
and (for all N $ 3) via transient states showing clusters in
several boxes [3,4]. This lack of time reversibility is yet
another consequence of the dissipation in the system.

The abruptness of the collapse allows us to define a
cluster lifetime t [via n̈cl �t� � 0; see Fig. 1e]. In Fig. 2
the measured lifetimes are plotted as a function of the
inverse shaking strength B̃ [Eq. (2)] for various values of
N . The data lie on a universal envelope curve, until at some
critical value B̃c,N (which grows with N) they diverge.
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All of the above experimental observations can be ac-
counted for quantitatively by means of the flux model of
Refs. [2–4]. At the heart of this model is a flux function
F�nk�, describing the outflow from the kth box to each of
its neighbors. It is a nonmonotonic function of nk (the
particle fraction in the box): F�nk� first increases with nk ,
but beyond a certain value of nk it decreases again, as the
increasingly frequent inelastic collisions slow the particles
down, so that they cannot make it over the wall to the
neighboring compartments anymore. The precise form of
F�nk� is not very critical, as long as it is a one-humped
function. We will use Eggers’ flux function [2]

F�nk� � C
p

B̃ n2
ke2B̃n2

k , (1)

with

B̃ ~
ghr4�1 2 e�2P2

S2�af�2
. (2)

The driving parameter B̃ depends on the total number
of particles P and their properties (radius r, restitution
coefficient e of the particle collisions), on the geometry
of the system (height h of the walls, ground area S of
each box), and on the frequency f and amplitude a of the

FIG. 1. (a)–(d) Four images from a five-box experiment, at
driving parameter B̃ � 8.2. The cluster is clearly present until
t � 42 s, then suddenly collapses, leaving no trace one second
later. (e) The time evolution of the cluster fraction ncl�t�, evalu-
ated from the flux model.
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FIG. 2. (a) Lifetime t vs driving parameter B̃, determined
from experiments with N � 3, 5 boxes (dots with error bars),
and from numerical evaluation of the flux model with N �
3, 5, 10, 20, 40, 80 boxes (empty symbols). The solid curves are
analytical solutions for N � 3 [9] and for the envelope curve,
which goes roughly as exp ����3�2�B̃��� [cf. Eq. (13)]. (b) Enlarge-
ment of (a), showing the experimental results for N � 3 and 5
in more detail. Every point is based on 15 repetitions of the
experiment; the vertical error bars denote the maximal deviation
from the average t measured, the horizontal ones represent the
accuracy in B̃. (c) Bifurcation diagram for N � 5, showing the
critical value B̃c,5. Declustering occurs to the left of this value.

shaking. The factor C determines only the absolute rate of
the flux, and can be incorporated in the time scale.

The equation of motion for the fraction in box k is [5]

dnk

dt
� F�nk21� 2 2F�nk� 1 F�nk11� , (3)

where k � 1, 2, . . . , N . Here we assume a nearest neigh-
bor interaction, and a cyclic arrangement of the boxes (k �
N 1 1 equals k � 1). We further impose particle conser-
vation,

P
k nk � 1.

The numerical results shown in Figs. 1e and 2 have been
obtained using the above flux model, starting out with all
particles in one box (labeled cl). They quantitatively agree
with the experimental observations. The decaying cluster
goes through three different stages.

The starting stage is a very short one, in which both ncl

and F�ncl� display a jump compared to ni and F�ni� in the
surrounding boxes, i � 1, 2, . . . (we have to consider one
side only because of the symmetry in the system).

In the second stage, the flux has become continuous but
the particle fraction remains discontinuous. However, its
low-density counterpart n0 [defined by F�n0� � F�ncl�]
does continuously connect to n1. We will use this fact
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later in the analysis of the envelope curve. The flux gradu-
ally grows, and eventually F�ncl� reaches its maximum
value. This is accompanied by rapid density changes and
the sudden death of the cluster at the lifetime t.

In the third and last stage, both ncl and F�ncl� fit con-
tinuously to the other boxes (see Fig. 3a). The remains of
the cluster diffuse over the whole system until the uniform
distribution is reached.

In what follows we will analytically solve the flux
model. First we focus on the third stage. We rewrite the
problem into its continuum version, by setting n�x, t� �
nk�t� (x � kw by definition, where the box width w will
be incorporated in the x scale). Equation (3) then becomes

≠tn � ≠xxF���n�x, t����
� C

p
B̃ ≠xx���n�x, t�2e2B̃n�x,t�2

� , (4)

and the conservation condition takes the formR`
2` n�x, t� dx � 1.
For very strong shaking [regime (i), where t is vanish-

ingly small] the diffusive stage sets in almost immediately.
Here B̃ ! 0, and Eq. (4) reduces to

≠tn � C
p

B̃ ≠xx�n2� � 2C
p

B̃ ��≠xn�2 1 n≠xxn� , (5)

which is known as the porous media equation [6,7]. The
decay of the cluster in this limit is depicted in Fig. 3a. It
is self-similar: all curves in Fig. 3a fall onto a single curve
if we properly rescale the axes (Fig. 3b). The original
partial differential equation (PDE) can thus be brought
back to an ordinary differential equation (ODE) in terms
of the self-similarity variable h � x��CB̃1�2t�1�3. With
n�x, t� � H�h���CB̃1�2t�1�3, Eq. (5) now takes the form

≠hh�H2� 1
1
3 ≠h�hH� � 0 . (6)

Its symmetric solution is H�h� � H0 2 �1�12�h2 [with
the constant H0 � �31�3��4 � 0.361 determined byR`

2` H�h� dh � 1]. This inverted parabola, depicted in
Fig. 3b, represents in one curve all the stages of Fig. 3a.
The scaling of the axes shows that the height of the cluster
decreases as t21�3, and its width grows as t1�3. This
anomalous diffusion (with exponent 1�3) is also found in
porous media [6,7]. The slowed down diffusion of the

FIG. 3. (a) The diffusing profile at successive times t (in the
limit B̃ � 0). (b) The function H�h� onto which all the curves
in plot (a) collapse by a proper rescaling of the axes (H ~ nt1�3

and h ~ xt21�3).
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front originates from the quadratic n dependence in ≠xxn2

[Eq. (5)]. In the context of our granular model this reflects
that particles diffuse to neighboring boxes only through
two-particle collisions: In the strong shaking limit the
absence of particles slows down further diffusion, and the
presence enhances it.

For nonzero B̃ [regime (ii), where the diffusive stage
has to wait until after the sudden death] we have an addi-
tional dimensionless variable x � B̃�C�t 2 t�. Its influ-
ence diminishes with time and the solutions converge to
the inverted parabola of the case B̃ ! 0.

Next we turn to the second, semicontinuous stage. For
moderate shaking, B̃ � B̃c,N , this stage can take quite a
long time. At the critical point B̃c,N the lifetime t even di-
verges to infinity and the cluster becomes stable. Starting
out from the initial �. . . , 0, 0, 1, 0, 0, . . .	 distribution, the
system first very slowly approaches a distribution in which
ncl is close to the cluster density at the saddle-node bifur-
cation (see Fig. 2c) and all other boxes contain equal frac-
tions nk � �1 2 ncl���N 2 1�. Only when it has passed
this phantom equilibrium (i.e., when ncl is below the level
of the saddle-node bifurcation), the system quickens its
pace and the sudden collapse occurs.

This means that t is the time it takes to pass the phantom
equilibrium. It can be calculated either numerically or ana-
lytically [by integrating the Taylor expansion of Eq. (3)],
with the result t ~ �B̃c,N 2 B̃�21�2. So t diverges as the
inverse square root of the distance to the critical point,
which is the common (mean field) power-law behavior near
a second order phase transition as we have here for t [8].

Finally, we calculate the lifetime away from the critical
point, i.e., for B̃ considerably smaller than B̃c,N . This will
give us an analytical expression for the envelope curve in
Fig. 2a. For these B̃ values, the collapse occurs before the
particles leaking out of the cluster have had time to fill
the outermost boxes to any significant level. Therefore, the
behavior does not depend on the value of N : The system
does not feel its finite size during the cluster’s lifetime, so
the number of boxes can be taken to be infinite.

The time evolution of the cluster is described by Eq. (3),
with F�n21� � F�n1�:

dncl

dt
� 22F�ncl� 1 2F�n1� � 22F�n0� 1 2F�n1� .

(7)

This equation contains n1, which is governed by a simi-
lar equation of motion [Eq. (3)] containing n2, etc. So we
have to deal with an infinite number of coupled nonlinear
ODE’s [9]. This is a problem that cannot be solved di-
rectly, so we attack it in five steps.

Step 1.—We first rewrite the problem into its continuum
version, and replace the cluster density ncl by its low-
density counterpart n�0, t� � n0�t� � ncl exp�2B̃n2

cl�2�.
Thus, without influencing the fluxes [since F�n0� �
F�ncl�] we make n�x, t� continuous in x � 0. The density
n�x, t� obeys Eq. (4), plus a conservation condition saying
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that the increase of material into the rest of the system
equals the influx from x � 0:

≠t

Z `

0
n�x, t� dx � 2≠x�F���n�x, t�����x�0 . (8)

Step 2.—The cluster-equation Eq. (7) now becomes

dncl

dt
� 2�≠xF���n�x, t�����x�0

� 2F0���n�0, t���� ���≠xn�x, t����x�0 .
(9)

Since F 0 can be derived directly from Eq. (1), the problem
reduces to determining ≠xn�x, t� at x � 0.

Step 3.— In order to do so, we observe that changes in
n�0, t� happen on a much longer time scale than in the
surrounding boxes [10], so the cluster acts as a constant
reservoir spilling granular material. This approximation
is illustrated in Fig. 4a: the profile in the system builds
up while n0 remains constant. In fact, this buildup takes
place in a self-similar way (see Fig. 4b). So, as before,
the problem for n�x, t� can be formulated in terms of one
variable j � x��n0CB̃1�2t�1�2. Setting n�x, t� � n0G�j�,
Eq. (4) becomes an ODE for G�j�, and also the accompa-
nying conservation condition [Eq. (8)] contains j only:

1
2j≠jG � 2≠jj�G2e2bG2

� ,

�≠jG�j�0 � 2
eb

4�1 2 b�

Z `

0
G�j� dj ,

(10)

where b � B̃n2
0.

Step 4.—The slope ���≠xn�x, t����x�0 can now be approxi-
mated by n0�t� ���≠jG�j����j�0�≠xj�x�0, where we have re-
vived the (slow) time dependence in n0�t�. With ≠xj �
���n0�t�CB̃1�2t���21�2, Eq. (9) becomes

dncl

dt
� 2

p
n0�t�

p
CB̃1�2t

F 0���n0�t���� ���≠jG�j����j�0 . (11)

All quantities on the right hand side are tractable. We
reexpress n0�t� in terms of ncl�t�, derive F 0 from Eq. (1),
and solve Eq. (10) to determine ���≠jG�j����j�0. This last
step still requires some work, because Eq. (10) does not
allow an analytical solution and moreover contains b [and

FIG. 4. (a) The density profile in the boxes surrounding the
cluster, at 20 consecutive (equidistant) moments in time, within
the constant n0 approximation; n0 � 0.223 and B̃ � 3.00.
(b) The function G � n�n0 onto which all curves in plot (a)
collapse by a proper rescaling of the axes (j ~ xt21�2).
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hence n0�t�] explicitly. Since b is small, however, we may
expand G�j� and Eq. (10) in terms of b, and solve numeri-
cally. In leading order we find ���≠jG�j����j�0 � 2K �
20.3138. Inserting all this, Eq. (11) becomes

dncl

dt
� 24

Kn
3�2
cl e2�3�4�B̃n2

cl

p
CB̃1�2t

�1 2 B̃n2
cle

2B̃n2
cl � . (12)

This is an ODE for ncl in closed form, which replaces the
original problem [Eq. (7)] consisting of an infinite number
of coupled ODE’s.

Step 5.—Finally, we integrate Eq. (12) over the cluster
density (dropping the suffix cl) and find an analytical ex-
pression for the lifetime t away from the critical points:

t �

"Z 1

nthr

p
CB̃1�2 n23�2e�3�4�B̃n2

dn

8K�1 2 B̃n2e2B̃n2�

#2

. (13)

Here nthr is the value of n at which the sudden death
occurs. For the evaluation of the solid curve in Fig. 2a
we used nthr � 0.5, but this value is not too critical
(cf. Fig. 1e). The only free parameter is the constant C:
if this is adjusted properly, the analytical t curve agrees
with the measured data over the whole range of B̃ values.

The above expression shows that t roughly increases as
exp�B̃3�2�. Recalling that B̃ is the inverse shaking strength,
this underlines the experimental observation that even a
small reduction in the shaking strength causes a tremen-
dous increase of the cluster lifetime.

In conclusion, in the studied compartmentalized system
clusters break down very abruptly, in contrast to their slow
formation. As clustering itself, the lack of time reversibil-
ity originates from the dissipative nature of the particle col-
lisions: The breakdown of the unstable cluster is delayed
because most of the energy input is dissipated through col-
lisions in the cluster. The dynamics is quantitatively de-
scribed by a remarkably simple flux model, which can be
analytically solved.
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