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We show that a micropolar fluid model successfully describes collisional granular flows on a slope. A
micropolar fluid is the fluid with internal structures in which coupling between the spin of each particle
and the macroscopic velocity field is taken into account. It is a hydrodynamical framework suitable
for granular systems which consists of particles with macroscopic size. We demonstrate that the model
equations can quantitatively reproduce the velocity and the angular velocity profiles obtained from the
numerical simulation of the collisional granular flow on a slope using a simple estimate for the parameters
in the theory.
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In spite of the long history of research on the granular
flows, the theoretical framework for their rheology has not
yet been established. One factor that makes analytical
treatment difficult is that there is not a great separation
of the length scales; the size of each particle is often com-
parable with the scale of the macroscopic collective mo-
tion. Therefore, there are many situations in which simple
hydrodynamic approaches cannot be used to characterize
granular flows [1]. Even when we consider the rapid granu-
lar flows [2], in which the density is low enough that kinetic
theory seems to be valid, the coupling between the rotation
of each particle and macroscopic velocity field may not be
negligible. Thus, the behavior of the flow can deviate from
that of a Newtonian fluid.

The micropolar fluid model is a continuum model to
describe a fluid that consists of particles with spinning
motion [3]. The model equations include an asymmetric
stress tensor and a couple stress tensor. Therefore, the
model can be a suitable framework to describe granular
flows.

Although some research on the application of the mi-
cropolar fluid model to granular flows has been carried
out [4], most work has considered dense granular flows, in
which the constitutive equations adopted for the stress and
the couple stress tensors were very complicated. Hence it
was difficult to interpret the results physically.

In this paper, we apply a micropolar fluid model to a
collisional granular flow. We adopt a set of constitutive
equations that are a simple and natural extension of those
for a Newtonian fluid. Note that Newtonian fluid models
of rapid granular flows [2] have been well established.
We calculate the velocity and angular velocity profiles for
uniform, steady flow on a slope and demonstrate that the
micropolar fluid model reproduces the results of numerical
simulations.

It is easy to derive the equations for the number density
n, the velocity yi, and the microrotation field vi of a
system that consists of identical particles with mass m and
moment of inertia I. From the conservation laws of mass,
momentum, and angular momentum [3], we obtain
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Dtn � 2n≠kyk , (1)

mnDtyi � mnfi 1 ≠jSji , (2)

InDtvi � ≠jCji 1 s
�a�
i . (3)

The summation convention applies to repeated subscripts.
≠i represents a partial derivative with respect to the ith
coordinate, Dt � ≠�≠t 1 yk≠k is Lagrange’s derivative,
and fi is the body force per unit mass. Here, Sij and Cij
are the stress tensor and the couple stress tensor that, re-
spectively, represents the j component of the surface force
and the surface torque acting on the plane perpendicular
to the i axis per unit area, and s�a�

i is the torque due to the
asymmetric part of the stress tensor defined as

s
�a�
i � eijkSjk , (4)

where eijk is the alternating tensor of Levi-Civita.
For the constitutive equation of the stress tensor Sij , we

adopt [3]

Sij � �2p 1 l≠kyk�dij 1 m�≠iyj 1 ≠jyi�
1 mr��≠iyj 2 ≠jyi� 2 2eijkvk� , (5)

with dij, Kronecker’s delta. The symmetric part of Sij in
Eq. (5) is the same as the stress tensor of the Newtonian
fluid with pressure p, shear viscosity m, and bulk vis-
cosity l. The third term on the right hand of Eq. (5)
represents the asymmetric part of the stress tensor due
to the difference between the rotation of the mean ve-
locity field and particles’ own spin. This gives s�a� �
2mr �= 3 y 2 2v�, using Eq. (4). The microrotation vis-
cosity mr represents the coupling between the velocity and
the microrotation field. For the couple stress tensor Cij , we
use the theorem that isotropic second order tensors can be
expanded as the trace, the symmetric part, and the asym-
metric part of rate of strain tensor for microrotation [3]:

Cij � c0≠kvkdij 1
mB 1 mA

2
�≠ivj 1 ≠jvi �

1
mB 2 mA

2
�≠ivj 2 ≠jvi � , (6)
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where the coefficients of angular viscosity are c0, mA,
and mB. It should be noted that the dimensions of these
coefficients are different from the viscosities in the stress
tensor by length squared because of the difference of the
dimensions between Sij and Cij and between yi and vi .

It is debatable whether such a straightforward extension
of Newtonian constitution relations can be applied to granu-
lar flow, because the hydrostatic term in a granular mate-
rial should have a different form. For a collisional flow,
however, we expect that such an effect is not important.
Therefore, we concentrate on a collisional granular flow.

The coefficients of viscosity that appear in Eqs. (5) and
(6) have been derived based on the kinetic theory of
three-dimensional spheres with rough surfaces [5,6]. Here,
for later convenience, and also to make the physical mean-
ing of the model clear, we briefly summarize the rough es-
timate of the coefficients of viscosity to the lowest order for
two-dimensional disks using elementary kinetic theory.
Let us consider a two-dimensional fluid that consists of
identical disks with diameter s and that is flowing uni-
formly in the x direction, namely n � n� y�, y �
���u� y�, 0, 0���, and v � ���0, 0, v� y����. Then we have

Syx � mu0� y� 1 mr�u0� y� 1 2v�y�� (7)

and

Cyz � mBv0�y� , (8)

where the prime denotes a derivative with respect to its
argument. Here, Syx (Cyz) is the x (z) component of the
force (torque) per unit area acting on the plane perpendicu-
lar to the y axis.

The coefficient m in Eq. (7) corresponds to the kinetic
viscosity in dilute gas, which we can find an estimate
of kinetic theory in textbooks on statistical physics, e.g.,
Ref. [7]. It is given by

m � nȳml �
1
s

p
Tm , (9)

where l is the mean free path and ȳ is the mean square
displacement of the velocity in the y direction. Here, T
is the granular temperature and the relation l � 1��ns� in
two-dimensional system is used.

The coefficient mB is estimated by a similar argument
to that of m. Because Cyz represents the net angular mo-
mentum transfer per unit time per unit length due to the
microrotation by particles crossing the plane y � const,
we can use the argument for m by replacing u� y� and m
by v�y� and I, respectively. Then mB is estimated as

mB � nȳIl � s
p
Tm , (10)

with I � ms2�8 for a two-dimensional disk. As we have
mentioned, the dimensions of m and mB are different.

For an estimation of mr , which gives coupling between
particles’ own spin and velocity field, we consider the col-
lision of two disks near the plane y � const [8]. If the
surface of the disk has some roughness, the momentum
tangent to the relative position of the colliding particles
174301-2
at the time of contact is transferred from one particle to
another. It is plausible to assume that the tangential mo-
mentum transferred in one collision is proportional to m
times Du, the relative tangential velocity of each particle at
the contact point. In order to simplify the estimation, let us
consider the situation with a uniform velocity field, namely
u0� y� � 0 [9]. Then Du is given by Du � 2�s�2�v� y�.
Because the frequency of collision per unit time per unit
length near the plane y � const with the width s is propor-
tional to n2ȳs2 in two dimensions, the momentum transfer
across the plane by collisions is estimated as

DM � n2ȳs3m�2v� y�� . (11)

Comparing Eq. (11) and the second term of Eq. (7) with
u0� y� � 0, we obtain

mr � n2ȳs3m � n2s3
p
Tm . (12)

Summarizing the results above, which are consistent
with Ref. [6], we get the following expressions for the
coefficients of viscosity:

mB

mr
�

1
n2s2

� l2,
m

mr
�

1
�ns2�2

�
µ
l
s

∂2

.

(13)

It should be noted that, because the dimension of mB is
different from that of m and mr , we need to introduce
another length scale to characterize the macroscopic flow
behavior in order to compare them. On the other hand, we
can see that, when the number density is high enough, mr

becomes comparable to m, then the coupling between the
angular momentum and the linear momentum should play
an important role.

Now we present the uniform, steady solution of the mi-
cropolar fluid equations (1), (2), and (3) on a slope, and
compare the obtained profiles with the result of numerical
simulation.

Let us consider the two-dimensional steady flow on a
slope under the gravity. We take the x axis in the direction
down the slope, and the y axis in the direction perpendicu-
lar to the slope. The inclination angle of the slope is u,
and the acceleration of gravity g � �g sinu, 2g cosu, 0�.
In the uniform, steady flow, mn � r � r� y�, y �
���u� y�, 0, 0���, and v � ���0, 0, v� y����, therefore the equation
of continuity (1) is automatically satisfied. Equations (2)
and (3) reduce to the following differential equations

rg sinu 1
d
dy

∑
m
du
dy

1 mr

µ
du
dy

1 2v

∂∏
� 0 , (14)

2rg cosu 2
dp

dy
� 0 , (15)

and

22mr

µ
du
dy

1 2v

∂
1

d
dy

∑
mB

dv

dy

∏
� 0 . (16)

The equation of state for a two-dimensional granular gas
has been derived in Ref. [10], but here we adopt the lowest
174301-2
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order estimate, namely p � rT�m. With the aid of the
assumption of constant temperature T � T̄ , we obtain the
density profile from Eq. (15):

r � r0 exp

µ
2
y

h

∂
, h �

T̄

mg cosu
. (17)

Then, from the estimate of the coefficients Eq. (13), we
introduce the nondimensional constants a and b as

mr

m
� a exp�22y�h�,

mB

m
� bs2. (18)

After integrating Eqs. (14) and (16) with Eqs. (17) and
(18), we obtain the following relation between the velocity
field u� y� and the microrotation field v� y�:

ũ�Y� � 2 exp�2Y� 2
be2

2
dṽ�Y�
dY

1 A0 , (19)

where

ũ �
u

r0gh2 sinu�m
, ṽ �

v

r0gh sinu�m
, (20)

with Y � y�h and e � s�h. Here, A0 is an integration
constant. In the integration of Eq. (14), we imposed the
boundary condition for stress tensor at the free surface,
limy!`Syx ! 0. From Eqs. (16) and (19), we have

d2ṽ�Y �
dY2 2 2

a exp�22Y �
be2

∑
exp�2Y� 1 2ṽ�Y�
1 1 a exp�22Y�

∏
� 0 .

(21)

Its general solution is given as the sum of a particular so-
lution ṽp and two homogeneous solutions ṽ1 and ṽ2 by

ṽ�Y� � Aṽ1�Y� 1 Bṽ2�Y� 1 ṽp�Y� , (22)

with integration constants A and B. Changing the variable
from Y to h � exp�2Y�, we can obtain the expressions

ṽp �
X̀
k�1

a2k11h2k11, with a3 �
2a

9be2 ,

a2k11 � f2k11a2k21 , (23)

ṽ1 �
X̀
k�0

b2kh
2k, with b0 � 1 ,

b2k � f2kb2k22 , (24)

and

ṽ2 � ṽ1 logh 1
X̀
k�1

c2kh
2k, with c0 � 0 ,

c2k � f2kc2k22 2
a

k3

∑
1

be2 1 k 2 1

∏
b2k22 , (25)

where

fm �
a

m2

∑
4

be2
2 �m 2 2�2

∏
. (26)

Note that ṽp and ṽ1 are regular but ṽ2 diverges at h � 0
(Y ! `).
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Now we show that the solution obtained from the mi-
cropolar fluid model can quantitatively reproduce the re-
sults of numerical simulations of collisional granular flow
on a bumpy slope [11]. In the simulation, the discrete
element method is employed with normal and tangential
elastic force and dissipation. The particles are modeled by
disks with diameter s, and the parameters are chosen so
that the normal restitution en becomes 0.7. The surface of
the slope is made rough by attaching identical particles to
it. In the following, all quantities are given in dimension-
less form with mass unit m, length unit s, and time unit
t �

p
s�g.

We used the data of the simulation with inclination
sinu � 0.45, system size L � 1002, and number of flow-
ing particle N � 1000. In the simulations, uniform flow
is realized during 500 & t & 2000 where t is the time [5].
In order to determine the profiles of the mean quantities
describing the flow, we divide the space into layers which
are one particle diameter wide parallel to the slope, calcu-
late the averages inside layers, and then average the data
over the time within the uniform flow, 1000 # t , 1500.
The origin y � 0 is taken one diameter above from the top
of the disks attached to the slope.

Now let us compare our analytical result from the micro-
polar fluid model with the simulation data. First, we con-
firmed that the number density profile can be well fitted by
Eq. (17) with h � 2.24, namely T̄ � 2.0, which has been
checked to be close to the averaged value of T . In order
to fit the solutions (19) and (22) to the simulation data,
we determine the boundary values u�0� and v�0� from the
data and treat a, b, m�r0, and v0�0� as fitting parame-
ters. From Fig. 1(a), we can see that the micropolar fluid
equations reproduce the angular velocity quantitatively.
Here, the value of parameters are a � 0.10, b � 0.12,
m�r0 � 0.95, and v0�0� � 2.9. The velocity profile u� y�
can also be well reproduced by the solution (19); however,
because the density is low, the deviation of the velocity

0

2

4

6

8

10

-3.0 -2.0 -1.0 0

y

ω (y)

(a)

0

2

4

6

8

10

0 1.0 2.0

y

− 12 u’(y) − ω (y)

(b)

FIG. 1. The properties of the uniform flow. Filled circles show
the data from the simulation and the solid line shows the uni-
form, steady solution of the micropolar fluid equations. (a) The
angular velocity profile v� y�. The dashed line is the finite se-
ries approximation of the solution Eq. (22) with k � 1 to 5; the
difference from the solid line is hardly distinguished by the eye.
(b) The profile of the deviation of the microrotation from the
rotation of velocity field, 1

2= 3 y 2 v.
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profile from the solution of the Navier-Stokes equation,
i.e., ũ�Y� � 2 exp�2Y� 1 A0, is small. Actually, we have
checked that the data can be reasonably fit with any small
value of a, as long as a�b is chosen appropriately. How-
ever, it is significant that the solution (22) can reproduce
the sharp variation of v� y� over only a few diameters near
the base.

The more important thing is that the mean spin v devi-
ates systematically from the rate of bulk rotation 1

2= 3 y,
and that the micropolar fluid model can reproduce this de-
viation. In Fig. 1(b), we see that the deviation is large near
the base, because each particle is forced to rotate by the
collision with the slope. This result indicates the impor-
tance of the couple stress near the boundary, as pointed out
in Ref. [12]. This deviation may produce the velocity pro-
file different from the Newtonian fluids described by the
Navier-Stokes equation due to the coupling between the
spin of each particle and the linear velocity field [13]. On
the other hand, it seems the deviation also becomes large
in the region far from the boundary. The reason is that the
microrotation field in this region is dominated by a small
number of particles spins that are generated by collisions
with the boundary.

In summary, the micropolar fluid model has been ap-
plied to a collisional granular flow with relatively low den-
sity. It has been demonstrated that the solution for uniform,
steady flow on an inclined surface reproduces the results
of numerical simulation.

Because the density is low, the ideal gas assumption for
the equation of state and the estimation of the viscosity
from the elementary kinetic theory work well. In order
to apply the model to denser collisional flows, we need
a systematic extension of the theory using, for example,
Enskog theory. This has already been done in the context
of polyatomic fluids for completely rough spheres without
energy dissipation [5], and it should be possible to extend
such results to the dissipative case [6]. The equation of
state for dense granular gas has also been discussed re-
cently [14]. On the other hand, it is known that the effect
of the particle spin becomes more important in dense fric-
tional flows [15]. Much research has been done to con-
struct the mechanics of granular media which is valid not
only for collisional flow but also for denser situations based
on the micropolar or Cosserat theory [16]. The concepts
of micropolar mechanics may help to link the understand-
ings of the collisional and the frictional flows of granular
materials.
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