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Permutation Entropy: A Natural Complexity Measure for Time Series
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We introduce complexity parameters for time series based on comparison of neighboring values. The
definition directly applies to arbitrary real-world data. For some well-known chaotic dynamical systems
it is shown that our complexity behaves similar to Lyapunov exponents, and is particularly useful in the
presence of dynamical or observational noise. The advantages of our method are its simplicity, extremely
fast calculation, robustness, and invariance with respect to nonlinear monotonous transformations.
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I. Complexity measures for time series.—Various mea-
sures of complexity were developed to compare time se-
ries and distinguish regular (e.g., periodic), chaotic, and
random behavior. Among others, it has been reported that
complexity of heart and brain data can distinguish healthy
and sick subjects and sometimes even predict heart attack
or epileptic seizure [1]. The main types of complexity pa-
rameters are entropies, fractal dimensions, and Lyapunov
exponents. They are all defined for typical orbits of pre-
sumably ergodic dynamical systems, and there are pro-
found relations between these quantities [2,3].

Problem: The basic conceptual problem is that these
definitions are not made for an arbitrary series of obser-
vations �x1, x2, . . .�. As a consequence, there is also a com-
putational problem. Many ingenious algorithms, tricks,
and recipes have been developed during the last 20 years
in order to estimate complexity measures from real-world
time series [4–7]. They work wonderfully when the time
series is simulated from a low-dimensional dynamical
system, but most of them break down as soon as noise is
added to the series. For real-world series, “noise elimi-
nation” requires careful preprocessing of the data and fine-
tuning of parameters, and the results cannot be reproduced
without specifying details of the method. One idea to over-
come these problems is the application of Kolmogorov-
Chaitin algorithmic complexity to orbits of dynamical
systems [7–9].

Our approach: We go another way, defining simple
complexity measures which are easily calculated for any
type of time series, be it regular, chaotic, noisy, or real-
ity based. Practical and theoretical examples were chosen
to compare our complexity with established concepts. In
Sec. III, we recognize voiced sounds in a speech signal.
In Sec. IV, we show for the well-known family of logis-
tic maps that our permutation entropy is very similar to
Lyapunov exponents over the range of several thousand pa-
rameter values. Most importantly, it yields meaningful re-
sults in the presence of observational and dynamical noise
(Sec. V).

Source entropy: Given a stationary time series �xt�,
most complexity parameters measure in one or the other
way the multitude of different vectors �xt11, . . . , xt1n� for
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various n, passing then with n to `. If the xt attain a
finite number M of values, the classical source entropy
h of Shannon measures the mean conditional uncertainty
of the future xt11 given the whole past . . . , xt21, xt. We
have 0 # h # logM, with h � 0 if the series is perfectly
predictable from the past and h � logM iff all values are
independent and uniformly distributed. Large h indicates
high complexity. Shannon’s entropy can be generalized by
Rényi’s a entropies [2,4,10].

Partitions: If the xt attain infinitely many values, it is
common to replace them with a symbol sequence �st� with
finitely many symbols, and calculate source entropy for
the st. We can use a partition X � P1 < · · · < Pm of
the set of values and define st � i if xt is in Pi . Then
we can increase the number m of pieces and get a limit
for fine resolution which is the Kolmogorov-Sinai entropy
hK, an isomorphism invariant of the dynamical system
[2,3,11]. For special generating partitions, no such limit
is needed. These partitions are difficult to find, however,
even for two-dimensional examples like the Henon system
[12]. For unimodal maps, the critical point defines a gener-
ating partition [13], but any misplacement of the partition
point gives an entropy smaller than hK [14]. Our viewpoint
(cf. [15]) is that the symbol sequence must come naturally
from the xt , without further model assumptions. Thus we
suggest to take partitions given by comparison of neigh-
boring values xt . For interval maps, this is similar to using
generating partitions [16].

II. Basic definitions.—The following definitions apply
to an arbitrary time series, with a weak stationarity as-
sumption explained below. In the sequel we neglect equal
values xt� � xt, t� fi t, and consider only inequalities
between the xt . This is justified if the values xt have a
continuous distribution so that equal values are very rare.
Otherwise, we can numerically break equalities by adding
small random perturbations.

Our entropies are calculated for different embedding
dimensions n, but we do not attempt to determine a
limit for large n although this is an interesting theoretical
problem [16]. For practical purposes, we recommend
n � 3, . . . , 7.

Example: Let us take a series with seven values:
© 2002 The American Physical Society 174102-1
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x � �4, 7, 9, 10, 6, 11, 3� .

We organize the six pairs of neighbors, according to their
relative values, finding four pairs for which xt , xt11 and
two pairs for which xt . xt11. So four of six pairs of val-
ues are represented by the permutation 01 �xt , xt11� and
two of six are represented by 10. We define the permuta-
tion entropy of order n � 2 as a measure of the probabili-
ties of the permutations 01 and 10. So,

H�2� � 2�4�6� log�4�6� 2 �2�6� log�2�6� � 0.918 .

As usual, log is with base 2, thus H is given in bit.
Next, we compare three consecutive values. (4, 7, 9) and
(7, 9, 10) represent the permutation 012 since they are in
increasing order. (9, 10, 6) and (6, 11, 3) correspond to the
permutation 201 since xt12 , xt , xt11, while (10, 6, 11)
has the permutation type 102 with xt11 , xt , xt12. The
permutation entropy of order n � 3 is H�3� � 22�2�
5� log�2�5� 2 �1�5� log�1�5� � 1.522.

Definition: Consider a time series �xt�t�1,...,T . We study
all n! permutations p of order n which are considered here
as possible order types of n different numbers. For each
p we determine the relative frequency (# means number)

p�p� �
#�tjt # T 2 n, �xt11, . . . , xt1n� has type p�

T 2 n 1 1
.

This estimates the frequency of p as good as possible for
a finite series of values. To determine p�p� exactly, we
have to assume an infinite time series �x1, x2, . . .� and take
the limit for T ! ` in the above formula. This limit exists
with probability 1 when the underlying stochastic process
fulfills a very weak stationarity condition: for k # n, the
probability for xt , xt1k should not depend on t.

The permutation entropy of order n $ 2 is defined as

H�n� � 2
X

p�p� logp�p� ,

where the sum runs over all n! permutations p of order n.
This is the information contained in comparing n consecu-
tive values of the time series. It is clear that 0 # H�n� #

logn! where the lower bound is attained for an increas-
ing or decreasing sequence of values, and the upper bound
for a completely random system (i.i.d. sequence) where all
n! possible permutations appear with the same probabil-
ity. The time series presents some sort of dynamics when
H�n� , logn!. Actually, in our experiments with chaotic
time series, H�n� did increase at most linearly with n; see
Sec. IV and [16]. Thus we define the permutation entropy
per symbol of order n, dividing by n 2 1 since compari-
sons start with the second value:

hn � H�n���n 2 1� .

Related entropies: We can also determine the informa-
tion contained in sorting the nth value among the previous
n 2 1 when their order is already known: dn � H�n� 2

H�n 2 1�, d2 � H�2� . This could be called sorting en-
tropy of order n. Clearly, hn � �d2 1 · · · 1 dn���n 2 1�
which means that hn is a stable parameter characterizing
the overall behavior of the time series, while the dn de-
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scribe more special properties connected, for instance, with
points of period n. In some cases, dn can increase with n.

Instead of H�n�, we also studied H0�n� �
log#�p of order njp�p� . 0� and defined a correspond-
ing h0

n � H0�n���n 2 1�. This definition is simpler, but
h0

n is not robust under noise, is influenced by outliers, and
needs more data for accurate estimates.

III. Results for a speech signal.—To demonstrate how
permutation entropy applies to real data, we consider in
Fig. 1a the utterance “permutation entropy measures com-
plexity” spoken by a male speaker in a modal register.
The signal was sampled at 11 kHz, using a low cost PC
sound card with standard data preprocessing (antialiasing
low pass), without special filtering. The signal was ana-
lyzed using a sliding window of Twin � 512 samples, that
is, 46 ms, and a one sample window shift. The 43 000
windows of the 4 s signal were processed on a PC in less
than a second, which means that permutation entropy can
be used in real-time applications. Since the window con-
tains less than 6! samples, we chose only low order n �
3, 4, 5 for Fig. 1b.

The signal starts and ends with noise, and the corre-
sponding normalized entropies H�n�� logn! are close to 1,
as well as for unvoiced sounds, while all voiced sounds
can be recognized by the decrease of entropy.

A well-known complexity parameter for short-time
speech analysis is the zero-crossing rate (ZCR) [17]:

ZCR � #�tjx�t�x�t 1 1� , 0���Twin 2 1� .

Assuming zero mean of the signal, ZCR is expected to
be close to 0.5 for noisy data like pure fricatives (un-
voiced sounds) or noisy breaks, and close to zero for voiced
speech (Fig. 1c). Therefore, it is recommended for detec-
tion of voiced segments.

FIG. 1. Sliding window complexity analysis of the utterance
“permutation entropy measures complexity.” (a) Speech signal,
(b) permutation entropies of order n � 2, 3, 4 (from top to bot-
tom), (c) zero-crossing rate.
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In Fig. 1, at first glance, ZCR and permutation entropy
(PE) behave similarly. However, at some places PE seems
to be a better indicator. During silence (e.g., 0, . . . , 0.3 s)
ZCR misleading indicates low complexity due to a tiny
100 Hz component (first harmonic of 50 Hz mains hum,
not visible in the figure). PE is more robust against such
perturbations. Moreover, PE sometimes better indicates
transitions, e.g., at 1.6 s, from voiced segment to a break,
or at 2.9 s where the two first syllables of “complexity” are
not properly separated by ZCR. The “u” in “permutation”
is also better detected by PE.

Various experiments have shown that PE, in contrast
to ZCR, is robust with respect to the choice of window
length (even 128 samples were sufficient), to the sampling
frequency (3, . . . , 11 kHz gives very similar results) and to
observational noise. The order n � 3, . . . , 7 of PE also had
little influence on the results. The computational effort is
only about 2n times the effort for ZCR.

IV. Results for chaotic time series.—To get a feeling
for our entropy, we processed not only single time series,
but orbits of several parametric families of dynamical sys-
tems. For the present paper we took 5001 parameter values
of the logistic map xt11 � rxt�1 2 xt� with 3.5 # r # 4
since the reader is familiar with all peculiarities of this
family [13]. Some two-dimensional dynamical systems,
like Hénon and dissipative standard maps, were also in-
vestigated. It always turned out that PE is very similar to
the positive Lyapunov exponent. In order to compare with
periodic windows, band-merging points, etc., Feigenbaum
diagram and Lyapunov exponents are given in Figs. 1a and
1b. In a more theoretical paper [16], it was shown that
for piecewise monotone interval maps, hn converges to the
Kolmogorov-Sinai entropy hK with n ! `, but this con-
vergence is rather slow.

Proper range for n and T : We used an extremely fast
algorithm where each pair of values need to be compared
only once, so time was not a problem even on a PC. For
larger n, the number n! of permutations which can appear
in the time series causes memory restrictions. More se-
riously, T should be considerably larger than this number
in order to estimate H�n� accurately. We took T � 106

which gave accurate results for n # 15, except for values
r close to 4.

Our numerical results show that the functions h6 and
h12 (Figs. 2c and 2d) are very similar. This justifies the
use of low entropy order in applications to real-world data
like Sec. III. It is also good to know that h6 can be reliably
estimated already from T � 1000 values (Fig. 3a).

Permutation entropy and Lyapunov exponent in
Figs. 2c, 2d, and 2b clearly have a very similar ap-
pearance over the whole chaotic regime. Differences
appearing within periodic windows will be explained now.
Suppose xt approaches a stable orbit of period m, and C is
the product of derivatives of the generating map along this
orbit. Then the Lyapunov exponent 1

m logjCj is negative.
Moreover, inside a window of a stable period, C runs
from 11 through 0 to 21 ([13], cf. Figs. 2a and 2b). Now
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for C . 0 there are at most m permutations in the time
series which leads to hn � �logm���n 2 1� for n $ m.
For C , 0 we have 2m permutations, and hn increases by
1��n 2 1�. The difference is 1�5 in Fig. 2c and 1�11 in
Fig. 2d. Unfortunately, numerical rounding produces 2m
permutations already for some r with C . 0 which leads
to the impression of two lines on the left of Figs. 2c and
2d. For large n, the entropy hn tends to zero in periodic
windows. Generally, it seems that l # h12 # h6.

FIG. 2. Logistic equations for varying control parameter r
(step Dr � 1024). (a) Bifurcation diagram, (b) Lyapunov expo-
nent l, (c) permutation entropy h6, (d) h12, (e) h12 with Gaussian
observational noise at standard deviations s � 0.000 25 (lower
line), and s � 0.004 (upper line), (f) h12 with additive Gaussian
dynamical noise at standard deviations s � 0.000 25, s � 0.001,
s � 0.004 (from thin to thick lines) (T � 106 data for each
r value).
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FIG. 3. Logistic map (r � 4). (a) Mean �hn� of our estimator
of order n permutation entropies hn for varying length T � 10k

of time series, (b) corresponding standard deviation s of hn .

The case r � 4, conjugate to the tent map [13], was
studied for time series of various lengths. We took 1000
time series of size T � 10k with k � 2, . . . , 6. Results
for T � 106 were confirmed by an exact study of space
averages, giving differences less than 1024 for n # 10
[16]. In Fig. 3a, we see that hn increases up to n � 7, 8
and then decreases. The limit for n ! ` exists and is 1,
the Kolmogorov-Sinai entropy [16]. The variance of the
estimates of hn (Fig. 3b) is rather small. There is a bias,
however, when T is small compared to n! which should be
compensated by a correction term as in [18].

V. The effects of noise.—Permutation entropies have a
practically important invariance property. If yt � f�xt�,
where f is an arbitrary strictly increasing (or decreasing)
real function, then hn is the same for xt and yt . Such
nonlinear functions f occur, for example, when measuring
physiological data with different equipment. However, the
invariance of hn also implies its discontinuity near the
constant time series xt � c where hn � 0. If this series
is disturbed by an i.i.d. noise, no matter how small, then
hn � �logn!���n 2 1�, the largest possible value.

Observational noise: For time series of period m and
n � km the disturbed time series admits m times k!m per-
mutations so that hn � �logm 1 m ? logk!���n 2 1� as
long as the noise preserves the order of the periodic orbit.
In Fig. 2e, Gaussian noise was added to the determinis-
tic time series. Here we get for the period-4 window (on
the left of Fig. 2a) m � 4 with h12 � 1.12, and for the
period-3 window (in the middle of Fig. 2a) m � 3 with
value h12 � 1.39. Outside the low-period windows, how-
ever, the observational noise causes only a small increase
of entropy. For the higher noise level, there are some peaks
exactly at band-merging points, for example, rc � 3.5748,
3.5925, 3.6785 (compare Figs. 2a and 2e). For r , rc the
noise anticipates the band-merging point by creating lots
of new permutations as in the periodic windows. When the
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band structure disappears, the influence of noise becomes
weaker and the entropy is smaller.

Dynamical noise, added to xt during each step of the
iteration, gives still better results. The entropy function
hn�r� becomes smooth, approximating the entropy of the
undisturbed time series for small noise level (Fig. 2f). Ac-
tually, Fig. 3a does not change at all for s # 0.004.

Near the period 3 window in Fig. 2f there are examples
of noise-induced order where larger noise gives smaller
hn—but in general hn increases with noise level. The ef-
fects of low periods disappear for larger noise level where
the increase of entropy with growing r becomes apparent.

VI. Conclusion.—Permutation entropy is an appropriate
complexity measure for chaotic time series, in particular in
the presence of dynamical and observational noise. In con-
trast with all known complexity parameters, a small noise
does not essentially change the complexity of a chaotic
signal. Permutation entropies can be calculated for arbi-
trary real-world time series. Since the method is extremely
fast and robust, it seems preferable when there are huge
data sets and no time for preprocessing and fine-tuning
of parameters.
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