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The first reported measurements of single attosecond pulses use laser dressed single-photon extreme
ultraviolet (XUV) ionization of gas atoms. The determination of XUV pulse duration from the electron
spectrum is based on a classical theory. Although classical models are known to give a qualitatively
correct description of strong laser atom interaction, the validity must be scrutinized by a quantum-
mechanical analysis. We establish a theoretical framework for the accurate temporal characterization of
attosecond XUV pulses. Our analysis reveals an improved scheme that allows for direct experimental
discrimination between single and multiple attosecond pulses.
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Extreme ultraviolet (XUV) pulse durations are usu-
ally determined by a laser-XUV pulse cross-correlation
measurement based on the laser-induced shift of the
photoelectron spectrum [1–5]. The time resolution
of this method is limited by the duration of the laser
pulse and, therefore, cannot be used in the attosec-
ond (10218 sec, asec) time domain. Recently, several
cross-correlation methods [6–9] were proposed that have
the potential to resolve asec pulse durations. The most
promising concept is based on the laser-induced shift
of the photoelectron spectrum, that is produced by laser
dressed single-photon ionization of gas atoms by an XUV
asec pulse. Two modifications of this method were used
to measure an asec pulse train [9] and an isolated XUV
pulse with a duration of 650 asec [8]. Our investigation
focuses on the scheme realized in Ref. [8], which has
the advantage that single asec pulses can be measured.
The difference to earlier experiments [1–5] is that the
sublaser cycle resolution is achieved by measuring the
electron spectrum only over a limited solid angle [8].
The XUV pulse duration was determined by using a
classical model that relates the shift and the broadening
of the electron spectrum to the XUV duration. The
classical model allows efficient numerical implementation
making this method a particularly attractive method for
asec pulse measurement. Although classical models in
strong laser-field physics are known to give a qualitatively
correct description, quantitative agreement between a
classical model and a full quantum-mechanical descrip-
tion is rarely the case. Therefore, a reliable determination
of sub-fs pulse durations with laser dressed single XUV
photoionization must depend on a thorough quantum-
mechanical analysis.

We perform such an analysis using exact integration
of the Schrödinger equation and analytical integration un-
der the strong field approximation (SFA), where the influ-
ence of the atomic Coulomb potential on the free electrons
is neglected. Based on the SFA we derive a quantum-
mechanical and a semiclassical equation for the electron
spectrum that can be integrated orders of magnitude faster
than the Schrödinger equation. The semiclassical theory
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presents a generalization of the classical model used in
Ref. [8] and, in special cases, becomes identical with the
classical model. The validity of the semiclassical approach
is verified by a comparison to exact results, which in a cer-
tain parameter range yields good agreement. Finally, our
analysis is used to identify an improved configuration for
asec pulse measurement. This setup is more than 1 order
of magnitude more efficient than the one used so far [8]
and allows for direct experimental discrimination between
single and multiple asec pulses.

Our analysis starts from the three-dimensional
Schrödinger equation in atomic units,
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=2 2
1
r

2 rE�t�
∏
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where the electron is coupled to the classical electromag-
netic field in dipole approximation and in the length gauge.
Here, r � �x, y, z� denotes the space coordinates, = is the
corresponding gradient operator, ≠t is the time derivative,
and C represents the electron wave function. The elec-
tric field E�t� � El 1 Ex comprises a laser, El, and an
XUV, Ex , contribution. The laser and XUV components,
El,x � êl,xEl,x�t 2 tl,x� cos�vl,x�t 2 tl,x��, are character-
ized by the polarization vector êl,x, envelope El,x�t�, and
by the carrier frequency vl,x. Further, we assume that the
laser pulse peak is at tl � 0 and that the XUV pulse peak
is delayed by a time tx � td. Finally, the electric field is
related to the vector potential by E � 2�1�c�≠tA, where
c denotes the velocity of light.

In the following, Eq. (1) is solved analytically by ap-
plying the SFA [10], i.e., the Coulomb potential is ne-
glected as compared to the laser field. As a result, the
Coulomb continuum eigenfunctions may be substituted by
plane waves, and Eq. (1) is integrated by using the ansatz
C � j0� exp�iIpt� 1

R
d3p b�p, t� jp�. Here, j0� denotes

the ground state with ionization potential Ip, the plane
wave is given by jp� � exp�ipr� with p the electron mo-
mentum, and b�p, t� is the momentum space wave function
of free electrons. Within the SFA we obtain the electron
spectrum as [11]
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The dipole moment is determined by d�p� � �pjrj0�. For
the special case of continuum transitions from hydrogen
bound s states, d ~ p��p2 1 2Ip�3. For calculations in
noble gases we have derived dipole moments from cross
sections tabulated in Ref. [12].

The integral in Eq. (2) is calculated in two ways, by
a Fourier-Bessel expansion of the exponential function in
harmonics of the laser field [13] and by the stationary phase
method [14]. The first route results in
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Eqs. (3) and (2) give identical results as long as the XUV
pulse duration is shorter than the laser optical cycle.

A simpler solution of Eq. (2) can be obtained in the
semiclassical limit by stationary phase integration. This
results in
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where S�ts� � �1�2�
R`

ts
�p 2 A�t00��2 dt00 1 �vx 2 Ip�ts is

the classical action, and S̈�ts� � 2E�ts� �p cosu 2 A�ts��
is the second time derivative of the classical action. Here,
u denotes the angle between the momentum p and the
polarization axis of the laser electric field. The stationary
0
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phase points ts are determined by solution of the stationary
phase equation �1�2� �p 2 Al�ts��2 � vx 2 Ip .

The SFA equation (3) and the semiclassical Eq. (4) re-
duce the computational effort for calculating the electron
spectrum by 4 to 5 orders of magnitude as compared to the
integration of Eq. (1). This makes the accurate determina-
tion of the XUV pulse duration including quantum effects
practically possible. It will be shown below that Eq. (4)
has a more limited validity range than Eq. (3); however, it
has the advantage that contact can be made with the clas-
sical analysis of Ref. [8].

The asec pulse measurement method in Ref. [8] relies on
the fact that the electron spectrum is measured in a limited
solid angle u, w. The XUV pulse duration is determined by
measuring the nth moment of the electron energy spectrum
as a function of the XUV pulse delay td , which is given by

�Vn�td�� �

Ru1

u0

R`
0 Vnjb�V, u�j2

p
V dV sinuduRu1

u0

R`

0 jb�V, u�j2
p

V dV sinudu
, (5)

where we denote the electron energy by V � p2�2. The
angle u to the polarization axis is confined between u0 and
u1. We focus here on configurations with cylindrical sym-
metry, where the linear laser and XUV polarizations coin-
cide, for which the integral over w drops out of Eq. (5).
Usually, the center of gravity �V� or the rms width of the
electron spectrum DV �

p
�V2� 2 �V�2 is used for asec

pulse measurement [8].
Equations (3) or (4) in combination with Eq. (5) allow

an efficient numerical evaluation of �Vn�. With the use
of Eq. (4), �Vn� can be further simplified and yields a
simple semiclassical formula. For that we insert Eq. (4)
and transform from �V, u� to �ts, u�, where V�ts� is defined
by the stationary phase equation. This yields
�Vn�td�� �

Ru1

u0

R`
2` Vn11�2�ts�E2

x �ts 2 td� �êxd�ts��2 dts sinuduRu1

u

R`
2` V1�2�ts�E2

x �ts 2 td� �êxd�ts��2 dts sinudu
. (6)
Equation (6) puts the classical derivation of Ref. [8] on
a more general and rigorous theoretical footing. In the
special case of transitions to spherically symmetric s con-
tinuum waves (angular momentum l � 0), the result of
Ref. [8] is exactly recovered. This is because, by virtue of
the stationary phase condition, d becomes independent of
the integration variables and drops out of Eq. (6).

The quality of the approximations utilized in our
derivation was tested by comparison to an exact numeri-
cal solution of Eq. (1) based on a discretization of the
Schrödinger equation in momentum space, as described
in Ref. [15]. For Fig. 1 we calculated the rms width
DV in various ways. The modulation of DV appears
for pulses shorter than one laser half-cycle and gives
a sensitive measurement of the XUV pulse duration.
The modulation increases with decreasing XUV pulse
duration. The filled circles, solid line, and dotted line
refer to the exact numerical solution of Eq. (1), to the
SFA equation (3) in combination with Eq. (5), and to the
integration of Eq. (6), respectively. The exact solution
agrees well with the SFA solution, which demonstrates
the validity of the SFA. The agreement with Eq. (6) is
best around the laser pulse center. The reason is that the
semiclassical calculation of the electron spectrum based
upon the stationary phase method fails for vanishing
laser intensities. In this limit, the electron spectrum
becomes a delta peak at energy vx 2 Ip. As a result
DV ! 0 for large td , whereas in reality the width never
drops below the spectral width of the XUV pulse. The
calculations in Fig. 1 were repeated by varying the laser
and XUV pulse parameters in the range relevant for
asec pulse measurement (XUV/laser duration between
173904-2
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FIG. 1. rms width DV of the electron spectrum for a hy-
drogen �1s� ground state as a function of delay time, td , be-
tween the laser and XUV pulse. The pulse parameters are laser
wavelength ll � 800 nm, laser FWHM pulse duration 5 fs,
sech laser pulse envelope, laser intensity Il � 3 3 1013 W�cm2,
vx � 90 eV, XUV pulse duration 500 asec, XUV pulse inten-
sity Ix � 1012 W�cm2. Laser and XUV polarization are chosen
parallel to the direction of observation, ẑ � êl k êx k p, and
u1 � 2±. DV was calculated in various ways: exact numerical
solution of Eq. (1) (filled circles), evaluation of the SFA equa-
tion (3) (solid line), and integration of the semiclassical Eq. (6)
(dotted line).

0.1�5 and 1�15 fs, XUV/laser peak intensity between
1012 and 1014 W�cm2, sech, and Gaussian pulse shape).
The only parameter critical for the applicability of the
semiclassical model is the laser peak intensity, for the
reasons discussed above. For intensities well below
1013 W�cm2 the semiclassical theory predicts wrong
rms widths (see Fig. 1) and the SFA equation must be
used. Finally, we did not plot the classical result, which
is identical with the semiclassical calculation for the
parameters chosen here. This is because for u 
 0±, d
becomes again independent of the integration variables
and drops out of Eq. (6). For u 
 90± the effect of d is
maximum and introduces a factor of 2 in the modulation
depth of the rms width.

To further corroborate the applicability of the SFA, we
have compared electron spectra in Fig. 2, which were cal-
culated by an exact solution of Eq. (1) (solid line) and by
Eq. (3) (dotted line). The agreement is excellent, justify-
ing the omission of the Coulomb potential in the derivation
of Eq. (3). Figure 2 reveals another important result.
Except for the XUV photoelectrons the spectrum at low
energies contains a contribution of ATI (above-threshold
ionization) electrons generated by the laser directly. The
experimental setup must be chosen in such a way that
the two contributions fall into well-separated spectral
ranges. Otherwise the laser dressed photoionization sig-
nal, carrying the information on the asec pulse duration, is
covered by the ATI electrons. So far, in order to minimize
ATI, electrons were observed perpendicular to the laser
polarization axis [8]. The spectrum in Fig. 2 shows that
the level of ATI electrons is less than anticipated. Even
for êl kp, where ATI reaches the maximal energies, the
laser induced part of the ionization spectrum is well
separated from the x-ray photo ionization spectrum.
173904-3
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FIG. 2. Photoelectron spectrum for the parameters of Fig. 1
and delay td � 0. The solid and dotted lines denote the elec-
tron spectrum as determined by numerical integration of the
Schrödinger equation (1) and the SFA equation (3), respectively.
Note that, in the derivation of Eq. (3), laser-induced ionization
is not included, which is responsible for the low-frequency part
(,30 eV) in the exact calculation.

This can be understood from a simple estimate. The
laser-induced part of the ATI spectrum consists of a main
part extending to 2Up and a smaller contribution coming
from rescattering, with electron energies up to 10Up [16].
Only the 2Up contribution is strong enough to cover the
XUV-induced electron signal. As a result, asec-pulse
measurement is feasible, as long as the lower cutoff of
the XUV photoelectron spectrum does not overlap with
the 2Up part of the laser-induced ATI spectrum. Based
on the stationary phase equation derived above the simple
condition 8Up # vx 2 Ip is found, determining the
parameter range in which the two spectral contributions
remain seperate. Laser-induced ionization becomes domi-
nant and buries the single XUV photoionization signal
only for laser peak intensities in excess of 1014 W�cm2.
This finding adds an additional degree of freedom to
the realization of an optimum setup for asec pulse
measurement.

A major problem in asec-pulse measurements is the
low efficiency of harmonic sources and the resulting long
data collection times and poor signal-to-noise ratio. So
far the asec measurement was performed with Kr 4p
electrons, for which the single XUV photon ionization is
dominated by a transition to a spherically symmetric s
continuum wave [12]. We have compared various experi-
mental setups with respect to efficiency in electron yield.
We find an optimal setup when laser and x-ray polarization
are chosen parallel to the direction of observation of the
electron spectrum, i.e., êl k êx k p. Instead of Kr 4p we
propose to use Ne 2p electrons. The overall gain in the
XUV electron yield as compared to the setup in Ref. [8]
is a factor of 30 for the same opening angle of 40±. This
enhancement can be attributed to two reasons. First, the
Ne 2p transition is an order of magnitude more efficient
than the Kr 4p transition. Second, the XUV photoioniza-
tion (90 eV) of Ne 2p electrons is dominated by a transfer
into a d continuum wave, which extends in the direction
173904-3
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FIG. 3. Signature of two attosecond pulses with delay times
td � 61�4 laser optical cycles compared to a single pulse with
delay td � 1�4. The remaining pulse parameters are as in
Fig. 1. Electrons released at td � 61�4 experience maximal
acceleration and maximum deceleration by the laser, creating
two well-separated electron peaks (dotted line). A single pulse
creates only a single peak (solid line).

of the x-ray polarization. Therefore, a measurement
along the x-ray polarization direction captures a larger
part of the photoelectrons, which gives an enhancement
by a factor of 3. The gain enhancement by more than
1 order of magnitude in our improved setup makes a more
efficient measurement of asec pulses possible and allows
an extension of the method towards shorter wavelengths.

Higher harmonic generation with few cycle laser pulses
tends to generate a single asec pulse with satellites at a
repetition rate of twice the laser frequency. For practical
applications it is essential to discriminate between a single
asec pulse and a pulse train. Recently, indirect evidence
of single asec pulses was obtained by using the harmonic
spectrum [8]. Measurement of the electron spectrum in the
laser polarization direction will allow for the first time to
directly distinguish a single asec pulse from a pulse train
(see Fig. 3). This is because the shift of electron energies
becomes sensitive to the sign of the laser vector potential
at the time of XUV ionization. Depending on the sign,
electrons are either accelerated or decelerated by the laser,
leading to two well-separated peaks in the electron spec-
trum. For one main and one or two smaller satellite pulses,
the ratio of the peaks in the electron spectrum reflects the
relative energy content carried in the satellites. In an ex-
periment, data are usually collected over several shots. For
the observation of a single peak, it is essential that the ab-
solute phase of the laser field is kept constant during data
acquisition.

In conclusion, we have developed a quantum-
mechanical model of laser dressed single x-ray photoion-
ization. It was shown that laser dressed photoionization
173904-4
can be quantitatively modeled by using the strong field
approximation, i.e., by neglecting the Coulomb potential
during the continuum evolution of the electron. Based on
the strong field approximation, we derived a quantum-
mechanical and a semiclassical expression that can be
evaluated efficiently, making an accurate determination
of the asec pulse duration including quantum effects
practicable. The validity range of the previously used
classical model was established. We identified an opti-
mum setup for an asec pulse measurement that is a factor
of 30 more efficient than existing schemes. Finally, the
proposed setup discriminates between single and multiple
attosecond pulses. The results revealed by our quantum-
mechanical investigation open the way towards an accu-
rate and more efficient measurement of asec pulses.
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