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The ground state of bosonic atoms in a trap has been shown experimentally to display Bose-Einstein
condensation (BEC). We prove this fact theoretically for bosons with two-body repulsive interaction
potentials in the dilute limit, starting from the basic Schrödinger equation; the condensation is 100%
into the state that minimizes the Gross-Pitaevskii energy functional. This is the first rigorous proof of
BEC in a physically realistic, continuum model.
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It is gratifying to see the experimental realization, in
traps, of the long-predicted Bose-Einstein condensation
(BEC) of gases. From the theoretical point of view,
however, a rigorous demonstration of this phenomenon —
starting from the many-body Hamiltonian of interacting
particles —has not yet been achieved. In this Letter, we
provide such a rigorous justification for the ground state
of 2D or 3D bosons in a trap with repulsive pair potentials,
and in the well-defined limit (described below) in which
the Gross-Pitaevskii (GP) formula is applicable. It is the
first proof of BEC for interacting particles in a continuum
(as distinct from lattice) model and in a physically realistic
situation.

The difficulty of the problem comes from the fact that
BEC is not a consequence of energy considerations alone.
The correctness [1] of Bogoliubov’s formula for the ground
state energy per particle, e0�r�, of bosons at low density r,
namely, e0�r� � 2p h̄2ra�m (with m � particle mass
and a � scattering length of the pair potential) shows
only that “condensation” exists on local length scales.
The same is true [2] in 2D, with Schick’s formula [3]
e0�r� � 2p h̄2r��mj ln�ra2�j�. Although it is convenient
to assume BEC in the derivation of e0�r�, these formulas
for e0�r� do not prove BEC. Indeed, in 1D the assumption
of BEC leads to a correct formula [4] for e0�r�, but there
is, presumably, no BEC in 1D ground states [5].

The results just mentioned are for homogeneous gases
in the thermodynamic limit. For traps, the GP formula is
exact [6,7] in the limit, and one expects BEC into the GP
function (instead of into the constant, or zero momentum,
function appropriate for the homogeneous gas). This is
proven in Theorem 1. In the homogeneous case, the BEC
is not 100%, even in the ground state. There is always
some depletion. In contrast, BEC in the GP limit is 100%
because the N ! ` limit is different.

In the homogeneous case, one fixes a . 0 and takes
N ! ` with r � N�volume fixed. For the GP limit, one
fixes the external trap potential V �r� and fixes Na, the
effective coupling constant, as N ! `. A particular, aca-
demic example of the trap is V�r� � 0 for r inside a unit
cube and V �r� � ` otherwise. By scaling, one can re-
late this special case to the homogeneous case and thereby
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compare the two limits; one sees that the homogeneous
case corresponds, mathematically, to the trap case with this
special V , but with Na3 � ra3 fixed as N ! `. Thus,
BEC in the trap case is the easier of the two, reflecting the
incompleteness of BEC in the homogeneous case. The lack
of depletion in the GP limit is consistent with ra3 ! 0
and with Bogoliubov theory.

We now describe the setting more precisely. We concen-
trate on the 3D case, and comment on the generalization to
2D at the end of this Letter. The Hamiltonian for N iden-
tical bosons in a trap potential V , interacting via a pair
potential y, is

H �
NX

i�1

�2Di 1 V�ri�� 1
X

1#i,j#N

y�ri 2 rj� . (1)

It acts on symmetric functions of N variables ri [ R3.
Units in which h̄2�2m � 1 are used. We assume the trap
potential V to be a locally bounded function, which tends
to infinity as jrj ! `. The interaction potential y is as-
sumed to be non-negative, spherically symmetric, and have
a finite scattering length a. (For the definition of scattering
length, see [6], [2], or [1].) Note that we do not demand y
to be locally integrable; it is allowed to have a hard core,
which forces the wave functions to vanish whenever two
particles are close together. In the following, we want to
let a vary with N , and we do this by scaling; i.e., we write
y�r� � y1�r�a��a2, where y1 has scattering length 1, and
keep y1 fixed when varying a.

The Gross-Pitaevskii functional is given by

E GP�f� �
Z

�j=f�r�j2 1 V�r� jf�r�j2

1 gjf�r�j4� d3r .

The parameter g is related to the scattering length of the
interaction potential appearing in (1) via

g � 4pNa . (2)

We denote by fGP the minimizer of E GP under the nor-
malization condition

R
jfj2 � 1. Existence, uniqueness,

and some regularity properties of fGP were proven in the
appendix of [6]. In particular, fGP is continuously differ-
entiable and strictly positive. Of course, fGP depends on
© 2002 The American Physical Society 170409-1
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g, but we omit this dependence for simplicity of notation.
For use later, we define the projector

PGP � jfGP� �fGPj . (3)

It was shown in [6] (see also Theorem 2 below) that,
for each fixed g, the minimization of the GP functional
correctly reproduces the large N asymptotics of the ground
state energy and density of H— but no assertion about BEC
in this limit was made in [6].

BEC in C, the (non-negative and normalized) ground
state of H, refers to the reduced one-particle density matrix

g�r, r0� � N
Z

C�r, X�C�r0, X� dX ,

where X � �r2, . . . rN � and dX �
QN

j�2 d3rj.
Complete (or 100%) BEC is defined to be the property

that 1
N g becomes a simple product f�r�f�r0 � as N ! `,

in which case f is called the condensate wave function.
In the GP limit, i.e., N ! ` with g � 4pNa fixed, we
can show that this is the case, and the condensate wave
function is, in fact, the GP minimizer fGP.

THEOREM 1 (Bose-Einstein condensation): For each
fixed g,

lim
N!`

1
N

g�r, r0 � � fGP�r�fGP�r0� .

Convergence is in the senses that Tracej 1
N g 2 PGPj ! 0

and
R

� 1
N g�r, r0 � 2 fGP�r�fGP�r0��2d3r d3r0 ! 0.

We remark that Theorem 1 implies that there is 100%
condensation for all n-particle reduced density matrices of
C; i.e., they converge to the one-dimensional projector
onto the corresponding n-fold product of fGP. To see
this, let a�, a denote the boson creation and annihilation
operators for the state fGP, and observe that

1 $ N2n�Cj�a��nanjC� � N2n�Cj�a�a�njC�

$ N2n�Cja�ajC�n ! 1 ,

where the terms coming from the commutators �a, a�� �
1 can be neglected since they are of lower order as N ! `.
The last inequality follows from convexity.

Another corollary, important for the interpretation of
experiments, concerns the momentum distribution of the
ground state.

COROLLARY 1 (convergence of momentum distribu-
tion): Let br�k� �

R
g�r, r0� exp�ik ? �r 2 r0 �� d3r d3r0

denote the one-particle momentum density of C. Then, for
each fixed g,

lim
N!`

1
N

br�k� � jbfGP�k�j2,

in the sense that
R
j

1
N br�k� 2 jbfGP�k�j2jd3k ! 0. Here,bfGP denotes the Fourier transform of fGP.

Proof.— If F denotes the (unitary) operator “Fourier
transform” and if w is an arbitrary bounded function with
bound kwk`, then
170409-2
Ç
1
N

Z brw 2
Z

jbfGPj2w

Ç
� jTrace�F ��g�N 2 PGP�F w�j

# kwk`Tracejg�N 2 PGPj ,

whence
R
jbr�N 2 jfGPj2j # Tracejg�N 2 PGPj. Q.E.D.

Before proving Theorem 1, let us state some prior re-
sults on which we shall build. Then we shall outline the
proof and formulate two lemmas, which will allow us to
prove Theorem 1. We conclude with the proof itself.

Denote by EQM�N ,a� the ground state energy of H and
by EGP�g� the lowest energy of E GP with

R
jfj2 � 1. The

following Theorem 2 can be deduced from [6].
THEOREM 2 (asymptotics of energy components):

Let r�r� � g�r, r� denote the density of the ground state
of H. For fixed g � 4pNa,

lim
N!`

1
N

EQM�N , a� � EGP�g� , (4a)

and

lim
N!`

1
N

r�r� � jfGP�r�j2, (4b)

in the same sense as in Corollary 1. Moreover, if w1
denotes the solution to the scattering equation for y1
(under the boundary condition limjrj!`w1�r� � 1) and
s �

R
j=w1j

2�4p, then 0 , s # 1 and

lim
N!`

Z
j=r1C�r1, X�j2 d3r1 dX

�
Z

j=fGP�r�j2 d3r 1 gs
Z

jfGP�r�j4 d3r , (5a)

lim
N!`

Z
V �r1� jCj2 d3r1 dX �

Z
V �r� jfGP�r�j2 d3r ,

(5b)

lim
N!`

1
2

NX
j�2

Z
y�r1 2 rj� jC�r1, X�j2 d3r1 dX

� �1 2 s�g
Z

jfGP�r�j4 d3r . (5c)

Only (4) was proven in [6], but (5) follows, as noted in [8],
by multiplying V and y by parameters and computing the
variation of the energy with respect to them.

[Technical note: The convergence in (4b) was shown
in [6] to be in the weak L1�R3� sense, but our result here
implies strong convergence, in fact. The proof in Corol-
lary 1, together with Theorem 1 itself, implies this.]

Outline of Proof.—There are two essential ingredients
in our proof of Theorem 1. The first is a proof that the
part of the kinetic energy that is associated with the inter-
action y [namely, the second term in (5a)] is mostly located
in small balls surrounding each particle. More precisely,
these balls can be taken to have radius N27�17, which is
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much smaller than the mean particle spacing N21�3. This
allows us to conclude that the function of r defined for
each fixed value of X by

fX�r� �
1

fGP�r�
C�r, X� $ 0 (6)

has the property that =rfX�r� is almost zero outside the
small balls centered at points of X.

The complement of the small balls has a large volume
but it can be a weird set; it need not even be connected.
Therefore, the smallness of =rfX�r� in this set does not
guarantee that fX�r� is nearly constant (in r), or even that it
is continuous. We need fX�r� to be nearly constant in order
to conclude BEC. What saves the day is the knowledge
that the total kinetic energy of fX�r� (including the balls)
is not huge. The result that allows us to combine these
two pieces of information in order to deduce the almost
constancy of fX�r� is the generalized Poincaré inequality
in Lemma 2. (End of outline.)

Using the results of Theorem 2, partial integration, and
the GP equation [i.e., the variational equation for fGP, see
[6], Eq. 2.4)], we see that

lim
N!`

Z
jfGP�r�j2j=rfXj

2 d3r dX � gs
Z

jfGPj4 d3r .

(7)

The following lemma shows that to leading order all the
energy in (7) is concentrated in small balls.

LEMMA 1 (localization of energy): For fixed X let

VX � 	r [ R3jmin
k$2

jr 2 rkj $ N27�17
 . (8)

Then

lim
N!`

Z
dX

Z
VX

d3rjfGP�r�j2j=rfX�r�j2 � 0 .

Proof.—We shall show that, as N ! `,Z
dX

Z
V

c
X

d3rjfGP�r�j2j=rfX�r�j2

1
1
2

"Z
dX

Z
d3rjfGP�r�j2

3
X
k$2

y�r 2 rk� jfX�r�j2
#

2 2g
Z

dX
Z

d3rjfGP�r�j4jfX�r�j2

$ 2g
Z

jfGP�r�j4d3r 2 o�1� , (9)

which implies the assertion of the lemma by virtue of (7)
and the results of Theorem 2. Here, V

c
X is the complement

of VX. The proof of (9) is actually just a detailed exami-
nation of the lower bounds to the energy derived in [6] and
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[1], and we use the methods in [1,6], just describing the
differences from the case considered here.

Writing fX�r� � Pk$2fGP�rk�F�r, X� and using the
fact that F is symmetric in the particle coordinates, we
see that (9) is equivalent to

1
N

Q�F� $ 2g
Z

jfGPj4 2 o�1� , (10)

where Q is the quadratic form

Q�F� �
NX

i�1

Z
V

c
i

j=iFj2
NY

k�1

jfGP�rk�j2 d3rk

1
X

1#i,j#N

Z
y�ri 2 rj� jFj2

NY
k�1

jfGP�rk�j2 d3rk

2 2g
NX

i�1

Z
jfGP�ri�j2jFj2

NY
k�1

jfGP�rk�j2 d3rk ,

(11)

with V
c
i � 	�r1, X� [ R3N jminkfii jri 2 rk j # N27�17
.

While (10) is not true for all conceivable F’s satisfying
the condition

R
jFj2

QN
k�1 jf

GP�rk�j2 d3rk � 1, it is true
for an F, such as ours, that has bounded kinetic energy
(7). Equations (4.11), (4.12), and (4.23)–(4.25), proved
in [6], are similar to (10) and (11) and almost establish
(10), but there are two differences which we now explain.

(i) In our case, the kinetic energy of particle i is re-
stricted to the subset of R3N in which minkfiijri 2 rkj #

N27�17. However, from the proof of the lower bound
to the ground state energy of a homogeneous Bose gas
derived in [1] [especially Lemma 1 and Eq. (26) there],
which enters the calculations in [6], we see that only this
part of the kinetic energy enters the proof of the lower
bound —except for some additional piece with a relative
magnitude ´ � O�N22�17�. In the notation of [1], the ra-
dius of the balls used in the application of Lemma 1 is cho-
sen to be R � aY25�17, which, in the GP regime, is R �
O�N27�17� since, for fixed Na, Y � O�a3N� � O�N22�.
(See [9] for a more complete discussion about the choice
of R.) The a priori knowledge that the total kinetic energy
is bounded by (7) tells us that the additional piece, which
is ´ times the total kinetic energy, is truly O�´� and goes
to zero as N ! `.

(ii) In [6] all integrals were restricted to some arbitrar-
ily big, but finite, box of size R0. However, the differ-
ence in the energy is easily estimated to be smaller than
2gN maxjrj$R0 jfGP�r�j2, which, divided by N , is arbitrar-
ily small, since fGP�r� decreases faster than exponentially
at infinity ([6], Lemma A.5).

Proceeding exactly as in [6] and taking the differences
(i) and (ii) into account, we arrive at (10). Q.E.D.

In the following, K , Rm denotes a bounded and con-
nected set that is sufficiently nice so that the Poincaré-
Sobolev inequality (see [10], Theorem 8.12) holds on K .
In particular, this is the case if K satisfies the cone prop-
erty [10] (e.g., if K is a ball or a cube).
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We introduce the general notation that f [ Lp�K� if
the norm k fkLp�K� � �

R
K j f�r�jp dmr�1�p is finite.

LEMMA 2 (generalized Poincaré inequality): For
m $ 2 let K , Rm be as explained above, and let h
be a bounded function with

R
K h � 1. There exists a

constant C (depending only on K and h) such that, for
all sets V , K and all f [ H1�K� [i.e., f [ L2�K�
and =f [ L2�K�] with

R
K fh dmr � 0, the inequality

Z
V
j=f�r�j2 dmr 1

µ
jVcj

jKj

∂2�m Z
K

j=f�r�j2 dmr

$
1
C

Z
K

jf�r�j2 dmr (12)

holds. Here j ? j is the volume of a set, and Vc � K n V.
Proof.—By the usual Poincaré-Sobolev inequality on

K (see [10], Theorem 8.12),

k fk2
L2�K� # C̃ k=fk2

L2m��m12��K�

# 2C̃�k=fk2
L2m��m12��V�1 k=fk2

L2m��m12��Vc�� ,

if m $ 2 and
R
K fh � 0. Applying Hölder’s inequality

k=fkL2m��m12��V� # k=fkL2�V�jVj1�m

(and the analogue with V replaced by Vc), we see that
(12) holds with C � 2jKj2�mC̃. Q.E.D.

The important point in Lemma 2 is that there is no re-
striction on V concerning regularity or connectivity.

Proof of Theorem 1.—For some R . 0 let K � 	r [
R3, jrj # R
, and define

� fX�K �
1R

K jfGP�r�j2 d3r

Z
K

jfGP�r�j2fX�r� d3r .

We shall use Lemma 2, with m � 3, h�r� �
jfGP�r�j2�

R
K jfGPj2, V � VX > K , and f�r� �

fX�r� 2 � fX�K [see (8) and (6)]. Since fGP is bounded
on K above and below by some positive constants, this
lemma also holds (with a different constant C0 ) with d3r
replaced by jfGP�r�j2 d3r in (12). Therefore,Z

dX
Z
K

d3rjfGP�r�j2� fX�r� 2 � fX�K �2

# C0
Z

dX
∑Z

VX>K

jfGP�r�j2j=rfX�r�j2 d3r

1
N28�51

R2

Z
K

jfGP�r�j2j=rfX�r�j2 d3r
∏

,

(13)

where we used jV
c
X > Kj # �4p�3�N24�17. The first

integral on the right side of (13) tends to zero as N ! ` by
Lemma 1, and the second is bounded by (7). We conclude,
since

R
K jfGP�r�j2fX�r�d3r #

R
R3 jfGP�r�j2fX�r� d3r,

that
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lim inf
N!`

1
N

�fGPjgjfGP�

$
Z
K

jfGP�r�j2 d3r

3 lim
N!`

Z
dX

Z
K

d3rjC�r, X�j2.

It follows from (4b) that the right side of this inequal-
ity equals �

R
K jfGP�r�j2 d3r�2. Since the radius of K

was arbitrary, 1
N �fGPjgjfGP� ! 1, implying Theorem 1

(cf. [11], Theorem 2.20). Q.E.D.
We remark that the method presented here also works

in the case of a 2D Bose gas. The relevant parameter to
be kept fixed in the GP limit is g � 4pN�j ln�a2N �j; all
other considerations carry over without essential change,
using the results in [2,7]. A minor difference concerns
the parameter s in Theorem 2, which can be shown to
be always equal to 1 in 2D; i.e., the interaction energy
is purely kinetic in the GP limit (see [12]). We also point
out that our method necessarily fails for the 1D Bose gas,
where there is presumably no BEC [5]. An analogue of
Lemma 1 cannot hold in the 1D case since even a hard
core potential with an arbitrarily small range produces an
interaction energy that is not localized on scales smaller
than the mean particle spacing. There is also no GP limit
for the one-dimensional Bose gas in the above sense.
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