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Exact c-Number Representation of Non-Markovian Quantum Dissipation
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The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact represen-
tation in terms of a stochastic Schrödinger equation. All memory effects of the reservoir are transformed
into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics
is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered
in the Born-Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature
and damping strength, is exemplified by an application to the dissipative two-state system.
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Irreversible quantum processes are important in almost
every field of condensed-matter physics and chemistry.
In phenomena as different as diffusion of light particles
in solids and light harvesting in biological systems, the
dissipation of energy, the destruction of phase coherence,
and the generation of entropy play a key role. The question
of how such processes can be described by the stochastic
propagation of quantum states has recently attracted in-
creasing attention [1–5]. For classical systems with linear
dissipation, Langevin equations provide a theoretical (and
numerical) tool to accurately describe the interaction of a
system with a complex thermal reservoir in comparably
simple terms of stochastic forces and memory friction.
For open quantum systems, no such simple and exact
approach in terms of an equation of motion has been estab-
lished so far. The dynamical quantity of interest is the re-
duced density matrix, obtained by tracing out the reservoir
degrees of freedom from the dynamics. Significant infor-
mation about correlations between system and reservoir is
lost in this operation; hence no deterministic differential
equation of motion can be derived for the reduced density
matrix without approximations. Traditional approaches
treat these correlations perturbatively, yielding approxi-
mate equations of motion such as Redfield or Master
equations. While these have been used very successfully
in the fields of quantum optics and magnetic resonance,
there are many condensed-matter problems where they are
qualitatively wrong. Large coupling constants and long
correlation time scales both need to be treated nonpertur-
batively. This can be accomplished in a formally exact
manner by path integrals for open quantum systems [6–9],
but an analytic evaluation of these functional integrals is
usually restricted to special cases and approximations,
e.g., the semiclassical limit. Furthermore, present exact
numerical techniques such as quantum Monte Carlo
(QMC) methods [10,11] have to cope with a sign problem
arising from the fact that probability amplitudes with
varying phases rather than probabilities have to be added
in a quantum computation.

Quantum state diffusion (QSD) [1–3] has been estab-
lished as an alternative theory of quantum dissipation in the
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perturbative regime. Through the stochastic propagation
of pure quantum states it yields an intuitively appealing
picture of the behavior of individual quantum trajectories
in open systems and permits effective numerical calcula-
tions. Generalizing this formalism to the case of nonper-
turbative, non-Markovian dynamics holds the promise to
overcome most of the above-mentioned limitations of cur-
rently known techniques. This approach has recently been
taken by Diósi, Strunz, and Gisin [4], but at the price of
incorporating non-Markovian retardation effects in a mem-
ory functional. In practice this means that a general solu-
tion of the resulting equation of motion, even numerically,
is almost as elusive as that of the underlying path integral.

In this Letter we derive and discuss stochastic
Schrödinger equations for open systems which allow the
treatment of linear dissipation of arbitrary strength and
correlation time scales. Without approximation, all effects
of the system-reservoir interaction are recast in the form
of c-number noise and friction forces with a suggestive
physical interpretation: The ensemble of phase-space
points described by a classical Langevin equation is
generalized to a stochastic ensemble of quantum states.
Both descriptions are linked by a correspondence principle
for open systems.

Any general theory of quantum dissipation has to start
from an open system embedded in a large reservoir sys-
tem, whose degrees of freedom are treated fully quantum
mechanically, but can later be eliminated from the dynam-
ics. The Hamiltonian of such a model consists of system
and reservoir terms and an interaction potential,

H � H0 1 HR 1 HI . (1)

Let us consider a thermal correlation function

�AB�t�� � tr�e2bHAe�i�h̄�HtBe2�i� h̄�Ht��tre2bH , (2)

where A and B are system operators. The time evolution
operators can be joined with the “imaginary-time” propa-
gator e2bH to form a propagator with complex time ar-
gument which describes the time evolution of a quantum
system along the contour C depicted in Fig. 1. This time
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FIG. 1. Contour for propagators in thermal correlation
functions.

evolution can be expressed by a path integral over the con-
figuration space of the system

�AB�t�� ~
Z

D �q	 e�i�h̄�S0�q	I�q	 �q01jAjq02 �

3 �qt1jBjqt2� , (3)

where a normalization factor has been suppressed for sim-
plicity. The action functional

S0�q	 �
Z
C

dt L�q, �q� (4)

depends in the usual way on the classical Lagrange func-
tion. The measure dt is the complex time differential on
C , and �q �

dq
dt . In the generalized influence functional

I�q	 

ø
TC exp

µ
2

Z
C

dt
i
h̄

HI �q�
∂¿

b

, (5)

the thermal average of the contour-ordered exponential is
taken with respect to the unperturbed reservoir. This exact
result can be simplified [8,12] by performing a cumulant
expansion of the expectation value in I�q	. The most com-
monly discussed case is that of linear dissipation, equiva-
lent to truncating the cumulant expansion after the second
order. This procedure is exact for a model reservoir of
harmonic oscillators, but also applies to any microscopic
model whose collective response to a perturbation HI is
dominated by its linear term.

In the following we restrict ourselves to linear dissipa-
tion, for which I�q	 is a Gaussian functional determined
by the correlation function �HI ���q�t����HI���q�t0�����. After an
expansion of HI �q� in terms of an arbitrary set of reservoir
operators Xj,

HI �
X
j

fj�q�Xj , (6)

the correlation matrix Ljk�t 2 t0� � �Xj�t�Xk�t0��b ,
characterizing the isolated reservoir, completely deter-
mines the influence functional

I�q	 � exp

√
2

1
h̄2

X
j,k

Z
C

dt
Z

t0¡t
dt0 fj���q�t����

3 Ljk�t 2 t0�fk���q�t0����

!
. (7)

Here “¡” denotes the order relation induced by the contour
orientation.
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The aim of the present work is to transform the exact de-
scription of open quantum systems by the influence func-
tional technique into an equivalent stochastic propagation
of the quantum states of the open system. We first show
that the influence functional I�q	 can be constructed as a
noise average of the form

I�q	 �

*
exp

√
i
h̄

X
j

Z
C

dt zj�t�fj���q�t����

!+
W

, (8)

where the average is taken with a Gaussian probability
measure W �zj	. If the stochastic covariance matrix of the
complex-valued noise coordinates zj�t� matches the quan-
tum correlation matrix of the coupling operators Xj,

�zj�t�zk�t0��W �

(
1
2 Ljk�t 2 t0�, t ∫ t0,
1
2 Ljk�t0 2 t�, t ¡ t0,

(9)

Eqs. (7) and (8) constitute a formal identity between
Gaussian functionals. Noting that Eq. (9) does not fully
determine the noise statistics, we find that correlations
of the type �zj�t�z�

k �t0�� can be chosen such that the
covariance matrix of all real-valued noise components
represents a positive quadratic form; i.e., Gaussian noise
�zj� with the desired properties exists.

For each sample of the noise, the propagation is
now governed by a time-local action functional; i.e., the
path-integral dynamics can be translated into an equivalent
Schrödinger equation. The propagation along the contour
C is governed by the Hamiltonian H0 and a stochastic
potential term,

ih̄j �c� � H0jc� 2
X
j

zj�t�fj�q� jc� . (10)

This remarkably simple equation shows that linear dissi-
pation can be described exactly by a linear QSD theory
containing no memory terms.

In order to compare this new finding with previous re-
sults, we need to choose the Feynman-Vernon influence
functional [6], for which the noise vanishes on the imagi-
nary axis. For simplicity, we discuss a one-dimensional
coupling HI � 2qx, where x is a reservoir operator with
correlation function L�t 2 t0�, associated with a single
noise coordinate z�t�. The propagation along the two
real-time segments of the contour can be restated in the
form of a stochastic Liouville equation for the reduced den-
sity matrix,

ih̄
dr

dt
� �H0, r	 2 z1qr 1 z�

2rq , (11)

where z1�t� � z�t� and z2�t� � z�t 2 ih̄b�, and where
the sample r of the reduced density matrix is separable,
r � jc1� �c2j. Hence Eq. (11) is just a compact notation
for two stochastic Schrödinger equations for jc1� and jc2�.

The noise forces may be represented as the sum of statis-
tically independent terms, z1,2 � z 1 y1,2. The terms y1
and y2 have identical statistics, but are uncorrelated. Per-
forming an average over y1,2 takes us back to the partial
decomposition of the influence functional given by Diósi,
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Strunz, and Gisin [4]. Using the same representation, the
stochastic Schrödinger equation of Markovian QSD can
be recovered. The same limits and approximations used
to derive Lindblad-type Master equations and their QSD
counterparts from a system-reservoir model, i.e., weak
damping and time coarse graining, can be applied to
Eq. (11). Coarse graining is done at an intermediate time
scale which is short compared to the relaxation time of
the damped system but long compared to its oscillation
periods and the relaxation times of the reservoir. In
this approximation the dynamics is sensitive only to
segments of the noise spectrum of z which are centered
around the natural transition frequencies of the undamped
system. In the Born-Markov limit the coarse-graining
time scales to zero, and each of these segments naturally
transforms into a distinct Markovian noise force coupled
to a Lindblad operator associated with the respective
quantum transition. Finally, the work of Stockburger and
Mak [5] using real noise and earlier work concentrating
on strictly Ohmic damping [13] can be recovered from the
present decomposition of the Feynman-Vernon influence
functional by applying the stochastic decomposition only
to the real part of L�t 2 t0� while explicitly evaluating
memory effects induced by the imaginary part.

As in the linear versions of conventional QSD, trr is not
conserved by the time evolution of Eqs. (10) and (11). A
transparent physical interpretation of the noise forces and
stochastic samples arises in a modified nonlinear theory for
which the trace of the reduced density matrix is preserved
not only in the stochastic average, but for each sample.

It will be advantageous to introduce new noise vari-
ables j � �z1 1 z�

2��2 and h̄n � z1 2 z�
2 , with resulting

covariances

�j�t�j�t0��W � ReL�t 2 t0� , (12)

�j�t�n�t0��W � �2i�h̄�Q�t 2 t0� ImL�t 2 t0�
� 2ixR�t 2 t0� , (13)

�n�t�n�t0��W � 0 , (14)

where xR is the response function of the reservoir. The
noise force j�t� can be chosen real, and this case will
be discussed here for simplicity. For comparison with
phenomenological friction models, one conventionally
augments the coupling Hamiltonian by a counterterm
in order to make the coupling translationally invariant.
The additional term is a quadratic potential modification
mq2�2 with m �

R`
0 dt xR�t�, which eliminates the

static response of the reservoir. Equation (11) is thus
transformed into

ih̄ �r � �H0,r	 1
m

2
�q2, r	 2 j�q, r	 2

h̄
2

n�q,r� .

(15)

For the normalized density matrix sample r̂ � r�trr, this
translates into the quasilinear equation of motion
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ih̄ �̂r � �H0, r̂	 1
m

2
�q2, r̂	 2 j�q, r̂	

2
h̄
2

n�q 2 q̄, r̂� (16)

with q̄ � trqr̂. When averaging the normalized density
matrix r̂, the factor

trr � exp

µ
i
Z t

0
dt0 q̄�t0�n�t0�

∂
(17)

needs to be incorporated into the integration measure.
Because the original integration measure W�j, n, n�	 is
Gaussian, the new measure Wt�j, n, n�	 including the fac-
tor trr can be rewritten by “completing the square” in
the exponent of the Gaussian functional, making the ex-
ponent a quadratic form of shifted variables, and yielding
Wt �j, n,n� 	 � W �jt, nt, n�

t 	 with

jt�t0� � j�t0� 1
Z t

0
ds xR�t0 2 s�q̄�s� , (18)

nt�t0� � n�t0� , (19)

n�
t �t0� � n��t0� 2 i

Z t

0
ds �n��t0�n�s��W q̄�s� . (20)

Using W�jt, nt , n�
t 	 as integration measure allows us

to interpret the shifted variables as noise to be used for
stochastic integration. The Jacobian determinant of the
variable change is unity: Because nt � n, and because q̄
is independent of n�, it simplifies to

djt

dj

djt

dn

djt

dn�

dnt

dj

dnt

dn

dnt

dn�

dn�
t

dj

dn�
t

dn

dn�
t

dn�

�

djt

dj

djt

dn 0

0 1 0
dn�

t
dj

dn�
t

dn 1

�

Ç
djt

dj

Ç
. (21)

Using the fact that both the bath response and q̄�j, n	 are
causal, one finds that jdjt�djj is represented by a triangu-
lar matrix with unit diagonal elements, i.e., jdjt�djj � 1.

After the variable change (with subscripts t now
dropped) the equation of motion is rewritten as

ih̄ �̂r � �H0, r̂	 2 j�q, r̂	 1 mg�t�q̄�0� �q, r̂	

1 m
Z t

0
dt0 g�t 2 t0� �̄q�t0� �q, r̂	

1
m

2
��q 2 q̄�2, r̂	 2

h̄

2
n�q 2 q̄, r̂� . (22)

Here we have integrated by parts, using the relation
m �g�t� � 2xR�t� between the reservoir response function
and the friction kernel g�t�. Remarkably, the mere choice
of a constraint for trr̂ has taken us from the abstract mathe-
matical decomposition (8) to an equation of motion with
a number of terms looking quite familiar; as in classical
dissipation, the dynamics is governed by c-number force
terms representing noise and a mean-field version of clas-
sical friction. Additional terms ascertain that the noise-
averaged r̂ contains the effect of all system-reservoir
correlations.
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FIG. 2. Stochastic and quantum Monte Carlo simulations of
a symmetric spin-boson system with xR�t� ~ t exp�2vct�, dis-
sipation constant [8] a � 0.1. (a) Coherent dynamics at zero
temperature. [Five repeated simulations of Eq. (15) are shown
to indicate statistical errors.] (b) Incoherent dynamics at T �
5h̄D�kB, simulated using Eq. (22).

Further examining this analogy, we find a “sample-
by-sample” correspondence between quantum mechanical
and classical stochastic dynamics. The time evolution of
Eq. (22) can be described in a reduced Heisenberg picture,
which is defined by interpreting expectation values of the
form tr�Ayr̂� as a scalar product �A, r̂� of two operators.
This allows the introduction of Heisenberg operators A�t�
through the propagating superoperator U�t� and its
adjoint,

���A, r̂�t���� � ���A,U�t�r̂0��� � ���Uy�t�A, r̂0��� � ���A�t�, r0��� .
(23)

In the classical limit, terms proportional to q 2 q̄ in
Eq. (22) can be neglected, and the equations of motion
governing the evolution of Heisenberg operators A�t�
become those of a classical stochastic system. For a
potential model, these reduce [14] to the generalized
Langevin equation

mq̈�t� � 2V 0���q�t���� 2 m
Z t

0
dt0 g�t 2 t0� �q�t0� 1 j�t� .

(24)

The limit h̄ ! 0 turns our stochastic ensemble of quantum
states gradually into an ensemble of phase-space points
with classical thermal noise and memory friction; i.e., the
quantum dynamics defined in Eq. (22) obeys a stochastic
correspondence principle.

Figure 2 shows numerical results for the symmetric
spin-boson system [15], where q is the Pauli matrix sz

and H0 � �h̄D�2�sx , compared to a QMC algorithm
which directly samples a path integral [10]. For the
coherent dynamics shown in Fig. 2a, the QMC method
does not fully converge even if run longer than our simu-
lation. Because of an only marginally ergodic Metropolis
random walk, the accuracy of the QMC method degrades
significantly with increasing t. Problems of this kind
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never appear in our algorithm because our samples are
statistically independent by construction. The incoherent
dynamics shown in Fig. 2b, a forte of the QMC method,
is treated equally well by both approaches.

We have derived exact stochastic equations of motion
for the reduced density matrix in linear form (10) and
trace-conserving form (22). In the latter, a close corre-
spondence with classical Langevin equations is evident.
Examples of numerical results show that the stochastic
equations of motion presented here provide a promising
alternative to currently available exact methods based di-
rectly on the path integral representation. Given the free-
dom of choice for the noise covariances left undetermined
by the physics of quantum dissipation, future improved nu-
merical methods are to be anticipated.
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