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The ground state of dipolar bosons placed in an optical lattice is analyzed. We show that the modifica-
tion of experimentally accessible parameters can lead to the realization and control of different quantum
phases, including superfluid, supersolid, Mott insulator, checkerboard, and collapse phases.
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The Bose-Einstein condensation (BEC) of dilute atomic
gases [1] has opened a new interdisciplinary area of mod-
ern atomic, molecular, and optical (AMO) physics on one
side and condensed matter physics on the other: the study
of ultracold weakly interacting trapped quantum gases [2].
Thus far most of the experiments in this area have been
very accurately described by the semiclassical mean-field
method and its extensions, based on the Gross-Pitaevskii
(GP) and Bogoliubov– de Gennes equations [3]. How-
ever, experimental techniques have recently progressed
to a stage at which mean-field methods cease to provide
an appropriate physical description. In this sense, ex-
periments on Feshbach resonances at JILA [4] allow the
modification of the s-wave scattering length to such large
values that the mean-field picture is no more applicable.
Similarly, the achievement of BEC in metastable helium
[5] opens the possibility to study higher-order correlation
functions, whose analysis requires theoretical approaches
beyond mean field. The recent observation of the Mott
insulator-superfluid phase transition in ultracold atomic
samples in optical lattices [6], predicted in [7], belongs
to the same category, but at the same time initiates a new
research area of AMO physics: the physics of strongly
correlated quantum gases. The experiments of [6] are
relatively easy to accurately control and manipulate and
thus provide a novel and particularly promising test ground
for theories of quantum phase transitions [8], which have
traditionally dealt with condensed-matter systems rather
than with atomic gases.

The influence of dipole-dipole forces on the properties
of BEC has also drawn considerable attention recently.
It has been shown that these forces significantly modify
the ground state and collective excitations of trapped con-
densates [9–11]. Dipole-dipole interactions are also re-
sponsible for spontaneous polarization and spin waves in
spinor condensates in optical lattices [12] and may lead
to self-bound structures in the field of a traveling wave
[13]. In addition, since dipole-dipole interactions can be
quite strong relative to the short-range (contact) interac-
tions, dipolar particles are considered to be promising
candidates for the implementation of fast and robust quan-
tum-computing schemes [14,15]. Sources of cold dipolar
bosons include atoms [16] or molecules [17] with perma-
nent magnetic or electric dipole moments. Other possible
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candidates could be atoms with electric dipoles, induced
either by large dc electric fields [9] or by optically admix-
ing the permanent dipole moment of a low-lying Rydberg
state to the atomic ground state in the presence of a mod-
erate dc electric field [11,14].

This Letter is devoted to the analysis of the ground state
of an ultracold gas of polarized dipolar bosons in an optical
lattice. The ground state of a gas of short-range repulsively
interacting bosons in a periodic potential can be either in
a superfluid phase or in a Mott-insulating phase, charac-
terized by integer boson densities and the existence of a
gap for particle-hole excitations [18]. The superfluid-Mott
insulator transition in cold bosonic atoms in optical lat-
tices has been recently theoretically analyzed [7] and ex-
perimentally demonstrated [6]. For the case of finite-range
interactions new quantum phases have been predicted [19],
including supersolid phases which combine both diagonal
and off-diagonal long-range ordering. To the best of our
knowledge, dipole-dipole interactions have not yet been
discussed in this context. We show in the following that
these interactions, which are long range and anisotropic,
lead to new interesting properties. The long-range charac-
ter of the dipole-dipole potential provides a rich variety of
quantum phases. Moreover, we show that the interactions
in a gas of dipolar bosons are easily tunable, allowing for
the experimental engineering of quantum phase transitions
between various kinds of ground states. Such a highly con-
trollable system may be crucial in answering some unre-
solved questions in the theory of quantum phase transitions
(e.g., the existence of a yet-unobserved supersolid [20], or
a Bose metal at zero temperature [21]).

A dilute gas of bosons in a periodic potential (e.g., in
an optical lattice) can be described with the help of the
Bose-Hubbard (BH) model [7]. For particles interacting
via long-range forces, the BH Hamiltonian becomes

H � J
X
�i,j�

b
y
i bj 1

1
2

U0

X
i

ni�ni 2 1�

1
1
2

Us1

X
�i,j�

ninj 1
1
2

Us2

X
��i,j��

ninj 1 · · · ,

(1)
where bi is the annihilation operator of a particle at the lat-
tice site i, which is considered as being in a state described
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by the Wannier function w�r 2 ri� of the lowest energy
band, localized on this site. This implies the assumption
that the energies involved in the system are small compared
to the excitation energies to the second band. We denote
the position of the local minimum of the optical potential
as ri , and the number operator for the site i as ni � b

y
i bi .

In Eq. (1), only the nearest-neighbor tunneling is consid-
ered, which is described by

J �
Z

w��r 2 ri�
µ
2

h̄2

2m
=2 1 Vl�r�

∂
w�r 2 rj� d3r ,

(2)

where j and i are indices of the neighboring sites, and
Vl�r� �

P
j�x,y,z V 0

j cos2�kjj� is the optical lattice poten-
tial with the wave vector k. The interparticle interactions
are characterized by the parameters

Us �
Z

jw�r 2 ri �j2Vint�r 2 r0� jw�r0 2 rj�j2 d3r d3r 0,

(3)

where jri 2 rjj � 4ps�jkj. U0 determines the on-site
interactions, Us1

the nearest-neighbor interactions, Us2
the

interactions between the next-nearest neighbors, etc. Con-
sequently, the respective summations in Eq. (1) must be
carried out over appropriate pairs of sites which are marked
by �. . .� for the nearest neighbors, ��. . .�� for the next-
nearest neighbors, etc. In the 2D calculations presented
below, we have taken into account interactions with up to
four neighbors (s1 � 1, s2 �

p
2, s3 � 2, s4 �

p
5),

since, in the particular cases we analyzed, the effects of
interactions of a longer range are negligible. In the case of
polarized dipoles the interaction potential is

Vint � d2 1 2 3 cos2u

jr 2 r0j3
1

4p h̄2a
m

d�r 2 r0� , (4)

where the first term is the dipole-dipole interaction charac-
terized by the dipole d and the angle u between the dipole
direction and the vector r 2 r0, and the second term is
the short-range interaction given by the s-wave scattering
length a and the atomic mass m.

We find the ground state of the system using a variational
approach (see [7] and references therein) based on the
Gutzwiller ansatz jCMF� �

Q
i jfi� for the ground-state

wave function, where the product is over all lattice sites.
The wave functions jfi� for each site are expressed in the
basis of Fock states, jfi� �

P`
n�0 fi

njn�i , where n indi-
cates the occupation number. The coefficients � fi

n� are
found by minimizing the expectation value of the Hamil-
tonian (1) in the state jCMF� under the constraint of a fixed
chemical potential m.

In the following, we consider 1D and 2D geometries.
Low-dimensional BECs have been achieved in recent ex-
periments [22] by transversally confining a condensate in
a tight optical or magnetic harmonic trap. A 1D or 2D lat-
tice is created by a laser standing wave, which generates
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a periodic optical potential [23]. We have carried out the
minimization of �CMFjH 2 m

P
i ni jCMF� for 1D lattices

with up to 20 sites and for square 2D lattices with up to
9 3 9 sites. A similar qualitative picture is expected for a
larger number of lattice sites. Since in 1D and for systems
with few atoms the application of a mean-field calculation
could be questionable (due to the possibly important role
of fluctuations), we restrict our discussion of the BH Ham-
iltonian (1) to the 2D case.

For a square 2D lattice in the xy plane, the wave func-
tions jfi� can be written as a product of Wannier functions
in the x and y directions and Gaussian functions in the z
direction. There are two generic situations for dipoles in
2D lattices, namely, (i) the dipole is along the z direction
or (ii) the dipole direction is in the xy plane. This fol-
lows from the fact that two dipoles experience maximal
attraction along the dipole direction and maximal repul-
sion in the transversal plane. As shown in Ref. [11], the
mean-field dipole-dipole energy critically depends on the
shape of the bosonic cloud, which can be altered by modi-
fying the trap. It is intuitively clear that a cloud elongated
in the dipole direction is unstable due to the predominance
of attractive interactions. On the contrary, the cloud may
be stable if it is broader in the transversal plane than in
the dipole direction. In particular, for spherically symmet-
ric wave functions jfi� the on-site averaged dipole-dipole
potential vanishes, and only the short-range interactions
contribute to U0.

Let us first focus on the case (i). Since the dipole-dipole
mean field critically depends on the shape of the cloud, the
balance between attractive and repulsive interactions can
be easily manipulated either by modifying the wavelength
and intensity of the lattice or by changing the transversal
trapping. In the following, we employ the latter possibil-
ity to provide an example of how different phases of the
BH Hamiltonian (1) may be accomplished just by chang-
ing the magnitude of controllable external fields. The
expectation values �bi� provide the superfluid order pa-
rameter. It is nonzero and constant for all lattice sites
in the superfluid phase, whereas it is periodically modu-
lated in the supersolid phase. Figure 1 shows the maxi-
mal (circles) and minimal (squares) value of j�bi�j and of
the occupation number �ni� as a function of the aspect ra-
tio of the on-site wave function jfi�. The aspect ratio is
defined as the square of the ratio between the width of
jfi� in the x direction and the width in the z direction,
L � �lx�lz�2. In the calculations presented in Fig. 1, we
have considered the case of 23Na atoms with an induced
dipole moment of 0.334 D, placed in a lattice of wave-
length l � 795 nm. The maximum of the lattice poten-
tial is V 0

x,y � 10Er , where Er � h̄2k2�2m is the recoil
energy. In our simulations, we fix the chemical poten-
tial m � 0.082Er , which determines the mean number of
atoms and mean density. The quantum phases appearing
for the different aspect ratios depend, of course, on the
chosen physical parameters. However, we have observed
170406-2
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FIG. 1. Maximal (circles) and minimal (squares) values of the superfluid parameter �bi� and of the occupation number �ni� as a
function of the aspect ratio L of the on-site wave functions.
a similar picture of tunable quantum phases for every set
of parameters that we have considered.

For L $ 1.1, a checkerboard insulating phase is
achieved, in which a site occupied by exactly one atom
is followed by an empty site. This phase is a result of
the long-range repulsion between particles in the presence
of a relatively weak tunneling, which prevents the ap-
pearance of a superfluid. For 0.9 , L , 1.1, the system
enters a supersolid phase, possessing both diagonal and
off-diagonal long-range order, in which the system is
superfluid, but the superfluid parameter shows a slight
periodic modulation. For 0.7 , L , 0.9, the influence
of tunneling relative to the long-range interactions is
large enough to enforce a homogeneous superfluid phase.
For 0.57 , L , 0.7, the system is a supersolid with
a strongly modulated superfluid parameter. This phase
appears due to a significant mutual cancellation of the
on-site dipole-dipole interactions (attractive for L , 1)
and the always repulsive short-range potential; the system
enters an interesting purely long-range regime with the
local interactions essentially absent. In such a case
the ratio J�U0, which governs the insulator-superfluid
crossover [18], increases, driving the system from an in-
sulating phase to a superfluid one. On the other hand, the
long-range interactions, characterized by the coefficients
Usi , remain considerably large and positive. As a conse-
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quence, a periodic modulation of the superfluid parameter
occurs. Finally, for L & 0.57, the system undergoes
local collapses due to the attractive local interactions.
This last regime has been confirmed by checking that the
maximal possible occupation per site is always achieved,
independently of the value of such maximal occupation.

Another simple experimental control knob is provided
by the angle a between the dipole direction and the vector
normal to the 2D lattice plane. For a � 0, we recovered
the previous results. For a . 0, the coefficients Us de-
pend not only on the distance between neighbors but also
on the angle between the projection of the dipole direc-
tion on the lattice plane and the vector joining the corre-
sponding sites. In Fig. 2 we present a sequence of quantum
phases obtained when the angle a is varied. For this cal-
culation, the aspect ratio is fixed to L � 0.5 and the rest of
the parameters are kept the same as those of Fig. 1. For a

approaching p�2, we observe only a Mott insulator phase
or a superfluid one, since when the projection of the dipole
onto the lattice plane is sufficiently large the dipole-dipole
on-site interaction becomes positive and reinforces the re-
pulsive on-site contact interactions. In other words, tilting
the dipoles towards the lattice plane brings the system back
to a situation of dominant local interactions [7,18]. For a

approaching zero, we observe collapse in this particular
case, as expected for L � 0.5 from Fig. 1. Additionally,
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FIG. 2. Maximal (squares) and minimal (circles) values of the superfluid parameter �bi� and of the occupation number �ni� as a
function of the tilt angle a.
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we should point out that we do not observe anisotropic
phases, which one might expect due to the anisotropy of
interactions, since we employ periodic boundary condi-
tions in our simulations.

Finally, let us stress that in the analysis of the BH Ham-
iltonian (1) we have expanded the field operator in the
basis of Wannier functions, which are exact solutions of
the single-particle problem in a periodic potential. This
method should give correct results as long as the mean
occupation of sites is of the order of unity. However,
nowadays it is possible to load large Bose-Einstein con-
densates into optical lattices [23], which results in a very
high occupation of sites. In such a situation, as long as
the lattice potential does not prevent the establishment of
a common phase between sites, the GP equation, routinely
used to describe the condensate wave function in harmonic
traps, should provide a correct description of the system
[11,24]. In the presence of sufficiently strong dipole-dipole
forces, we can neglect the short-range interactions, and the
time-independent GP equation reads

mc�r� �

Ω
2

h̄2

2m
=2 1 Vl�r� 1 Vt�r�

1 d2
Z

dr0
1 2 3 cos2u

jr 2 r0j3
jc�r0�j2

æ
c�r� , (5)

where c�r� is the wave function of the condensate (nor-
malized to the total number of particles N), and Vt�r� �
mv2r2�2 is a spherically symmetric harmonic trap with
frequency v. In the absence of the lattice potential Vl�r�,
the condensate is stable as long as s � N

m
h̄2

p
�mv��h̄ d2

does not exceed some critical value scr (for a spherical
trap scr � s0

cr � 4.3 [11]). We have observed that, by
raising various 1D and 2D lattice configurations, one can
either destabilize the condensate for s , s0

cr or make it
stable in the regime s . s0

cr. For instance, the BEC is
stabilized for a 1D lattice whose wave vector is along the
dipole direction, or a 2D lattice on a plane which contains
the dipole direction. The discussion of these results will be
presented in detail elsewhere. Let us just stress here that
dipolar gases provide also in this situation a unique and
very efficient possibility of coherent control of a BEC.

In this Letter we have analyzed the ground state of dipo-
lar bosons placed in an optical lattice. We have shown
that, by modifying well-controllable parameters, different
quantum phases can be accomplished, including super-
fluid, supersolid, Mott insulator, checkerboard, and col-
lapse phases.
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