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We analyze the structure of correlations among more than two quantum systems. We introduce a
classification of correlations based on the concept of nonseparability, which is different a priori from the
concept of entanglement. Generalizing a result of Svetlichny [Phys. Rev. D 35, 3066 (1987)] on three-
particle correlations, we find an inequality for n-particle correlations that holds under the most general
separability condition and that is violated by some quantum-mechanical states.
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Quantum mechanics (QM) predicts remarkable correla-
tions between the outcomes of measurements on subsys-
tems (particles) of a composed system. This prediction is
consequence of the linearity of QM, which allows one to
build superposition states that cannot be written as prod-
ucts of states of each subsystem. Such states are called en-
tangled. Entanglement is at the heart of some of the most
puzzling features of QM: the Einstein-Podolski-Rosen
argument, the measurement problem, the paradox of
Schrödinger cat … . In the past decade, it has been
noticed that entanglement is also a resource that allows
one to perform tasks that would be classically impossible.
This new, more effective standpoint caused a renewed
interest in the study of quantum correlations [1].

The correlations among more than two quantum systems
have been the object of several recent studies, also moti-
vated by the fact that experiments aimed to check such
correlations are becoming feasible. Usually, the structure
of correlation has been classified according to entangle-
ment. In this Letter, we propose a complementary classi-
fication, in terms of nonseparability. Before entering the
technicalities, it is useful to explain why the concepts of
entanglement and of nonseparability are a priori different
concepts. We do this on the simplest case, that of correla-
tions between three particles.

The classification through entanglement presupposes
that the system of three particles admits a quantum-
mechanical description. Thus, any state of the system is
described by a density matrix r. To classify a given r
in terms of entanglement, one must consider all possible
decompositions of the state as a mixture of pure states
r �

P
i pijCi� �Ci j. Then, (i) if there exists a decompo-

sition for which all jCi� are product states jc
1
i � jc2

i � jc3
i �,

then r is not entangled at all; that is, it can be prepared
by acting on each subsystem separately. For this situation,
we use the acronym 1�1�1QM. (ii) If all jCi� can be
written as either jc12

i � jc3
i � or jc13

i � jc2
i � or jc23

i � jc1
i �, and

at least one of the jc
jk
i � is not a product state, then r is

entangled, but there is no true three-particle entanglement.
We shall say that r exhibits two-particle entanglement,
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and use the acronym 2�1QM to refer to it. (iii) Finally, if
for any decomposition there is at least one jCi� that shows
three-particle entanglement, then to prepare r one must
act on the three subsystems: r exhibits true three-particle
entanglement (acronym 3QM).

It is difficult to establish to which class a given r

belongs, because, in principle, one should write down all
the possible decompositions of r onto pure states. In fact,
to date no general criterion is known. However, we know a
sufficient criterion: There exists an operator M3 such that
(a) if Tr�rM3� . 1, then certainly r is entangled; (b) if
Tr�rM3� .

p
2, then certainly r exhibits true three-

particle entanglement. The operator M3 is the Bell
operator that defines the so-called Mermin inequality [2];
we shall come back to it later.

The classification through nonseparability (or nonlocal-
ity) does not presuppose that the system of three particles
admits a quantum-mechanical description. Rather, we have
the following cases:

(i) Each particle separately carries a script l, which
determines the outcome of each possible measurement.
When the experiment is repeated, the script can be differ-
ent —the script l occurring with probability r�l�. This
is the so-called local variables (ly) model, which we will
also denote as 1�1�1S. More exactly, in the ly model,
the joint probabilities P�a1, a2, a3� that an arbitrary experi-
ment A1 performed on particle 1 yields the result a1, while
the measurement A2 performed on particle 2 yields a2 and
the measurement A3 on particle 3 yields a3, is given by

P�a1, a2, a3� �
Z

dl r�l�P1�a1jl�P2�a2jl�P3�a3jl� ,

(1)

where P1�a1jl� is the probability that when particle 1 car-
rying the script l is subjected to a measurement of A1 it
yields the result a1, and similarly for P2 and P3. Note that
ly is more general than 1�1�1QM. For instance, in ly
one can build a state such that the measurement of the spin
of particle 1 along both directions ẑ and x̂ gives 11 with
certainty, while such a state does not exist in QM.
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(ii) The intermediate case, first considered by Svetlichny
[3], is a hybrid local–nonlocal model: for each triple of
particles, we allow an arbitrary (i.e., nonlocal) correlation
between two of the three particles, but only local correla-
170405-2
tions between these two particles and the third one; which
pair of particles is nonlocally correlated may be different
in each repetition of the experiment. If we define pi,j to
be the probability that particles i and j are nonlocally cor-
related, then in this model
P1,2,3�a1, a2, a3� �
3X

k�1

pi,j

Z
dl�ri,j�l�Pi,j�ai , aj jl�Pk�Ak � akjl�� , (2)
where �i, j,k	 is an even permutation of �1, 2, 3	. We refer
to this situation by the acronym 2�1S. Note again that
2�1S is more general than 2�1QM, since we do not require
that the two correlated particles are correlated according
to QM.

(iii) The last situation (3S) is the one without con-
straints: We allow all three particles to share an arbitrary
correlation.

It is not evident a priori whether three-particle entangle-
ment 3QM is stronger, equivalent, or weaker than 2�1S.
The proof that 3QM is actually stronger than 2�1S was
given some years ago by Svetlichny [3], who found an
inequality for three particles that holds for 2�1S and is
violated by QM. In this Letter, we are going to exhibit a
generalized Svetlichny inequality for an arbitrary number
of particles n, that is, an inequality that allows one to dis-
criminate n-particle entanglement nQM from any hybrid
model k��n 2 k�S.

The plan of the paper is as follows. First, we introduce
the family of the Mermin-Klyshko (MK) inequalities [2,4],
which will be the main tool for this study. With this tool,
we rederive Svetlichny’s inequality for three particles and
compare it to Mermin’s. We move then to the case of four
particles, and show that the MK inequality plays the role of
generalized Svetlichny inequality. Finally, we generalize
our results for an arbitrary number of particles n.

We consider, from now on, an experimental situation
in which two dichotomic measurements Aj and A0

j can be
performed on each particle j � 1, . . . , n. The outcomes of
these measurements are written aj and a0

j, and can take the
values 61. Letting M1 � a1, we can define recursively the
MK polynomials as

Mn �
1
2 Mn21�an 1 a0

n� 1
1
2 M 0

n21�an 2 a0
n� , (3)

where M 0
k is obtained from Mk by exchanging all the

primed and nonprimed a’s. In particular, we have

M2 �
1
2 �a1a2 1 a0

1a2 1 a1a0
2 2 a0

1a0
2� , (4)

M3 �
1
2 �a1a2a0

3 1 a1a0
2a3 1 a0

1a2a3 2 a0
1a0

2a0
3� . (5)

The recursive relation (3) gives, for all 1 # k # n 2 1,

Mn �
1
2Mn2k�Mk 1 M 0

k� 1
1
2 M 0

n2k�Mk 2 M 0
k� . (6)

We shall interpret these polynomials as sums of expecta-
tion values; e.g., we shall interpret M2 as

1
2 �E�A1A2� 1 E�A0

1A2� 1 E�A1A0
2� 2 E�A0

1A0
2�� , (7)
where E�A1A2� is the expectation value of the product
A1A2 when A1 and A2 are measured (note that A1 and A0

1
cannot be measured at the same time). We call quantities
such as E�A1A2A3� correlation coefficients. We shall look
at the values of these polynomials under QM and hybrid
local/nonlocal variable models, and show that they give
generalized Bell inequalities.

We shall first look at hybrid local/nonlocal variable
models. For technical simplicity, throughout this paper we
consider only deterministic versions of the hybrid variable
models, which means that the script l in Eqs. (1) and (2)
completely determines the outcome of the measurements
[i.e., the probabilities P1�X � xjl� and similar are either
zero or one]. It is known that any nondeterministic local
variable model can be made deterministic by adding addi-
tional variables [5]. In addition, we can also use the script
l to determine which particles are allowed to communi-
cate nonlocally: e.g., for three parties, the probabilities are
now given simply by

P�a1, a2, a3� �
Z

dl r�l�P�a1, a2, a3jl� , (8)

where for each l the probabilities must factorize as some
2�1 grouping (though not necessarily the same for different
l). Now, for any l, the outcomes of all products A1A2A3
etc. are fixed, and so we can define the fixed quantity Ml

n .
The value of Mn is just the probabilistic average over l

of Ml
n . Thus, if we can put a bound upon all possible

Ml
n , then we have a bound upon Mn. For example, it can

be shown that, for any ly model, Mn # 1. This can be
easily seen from (3) using a recursive argument, noting
that for any script of local variables it holds that either
an � a0

n or an � 2a0
n. In particular, M2 # 1 for ly is

the Clauser-Horne-Shimony-Holt inequality for two par-
ticles [6]. On the opposite side, if we consider the model
without constraints nS, then Mn can reach the so-called al-
gebraic limit M

alg
n , achieved by setting at 11 (respectively

21) all the correlation coefficients that appear in Mn with
a positive (respectively negative) sign. So, for example,
M

alg
2 � M

alg
3 � 2.

Turning to QM, since we consider dichotomic measure-
ments, we can restrict to the case of two-dimensional sys-
tems (qubits) [7]. In this case, the observable that describes
the measurement Aj can be written as �aj ? �s 
 saj ,
with �aj a unit vector and �s the Pauli matrices. The
equivalent of Mn is the expectation value of the operator
Mn obtained by replacing all a’s by the corresponding
sa. It is thus known that QM violates the inequality
170405-2
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Tr�rMn� # 1. More precisely, it is known [4] that (I) the
maximal value achievable by QM is Tr�rMn� � 2�n21��2,
reached by the generalized Greenberger-Horne-Zeilinger
(GHZ) states �1�

p
2� �j0 . . . 0� 1 j1 . . . 1��; (II) if r

exhibits m-particle entanglement, with 1 # m # n, then
Tr�rMn� # 2�m21��2 [8]. In other words, if we have a
state of n qubits r such that Tr�rMn� . 2�m21��2, we
know that this state exhibits at least �m 1 1�-particle
entanglement. This means that the MK polynomials allow
a classification of correlations according to entanglement.
But do they allow also the classification according to
nonseparability? The answer to this question: yes for n
even, no for n odd. As announced, we demonstrate this
statement first for n � 3, then for n � 4, and finally for
all n.

Three particles.—Let us take the Mermin polynomial
M3 given in (5). We have already discussed the following
bounds: Mly

3 � 1, M
2�1QM
3 �

p
2, M

3QM
3 � M

alg
3 � 2.

We lack the bound for 2�1S. This is easily calculated:
Consider a script in which particles 1 and 2 are correlated
in the most general way, and particle 3 is uncorrelated with
the others. Then we use (3), which reads M3 �

1
2 M2�a3 1

a0
3� 1

1
2 M 0

2�a3 2 a0
3�. For any particular script, as we

said above, a3 can only be equal to 6a0
3. Without loss

of generality, we choose a3 � a0
3 � 1, whence M

2�1S
3 �

maxM2. Since particles 1 and 2 can have the highest

correlation, maxM2 � M
alg
2 here. In conclusion, M

2�1S
3 �

2. Thus, for Mermin’s polynomial,

M
2�1S
3 � M

3QM
3 � M

alg
3 � 2 . (9)

The Mermin polynomial does not discriminate between
the deterministic variable models 2�1S and 3S, and the
quantum-mechanical correlation due to three-particle en-
tanglement. The deep reason for this behavior lies in the
fact that M3 has only four terms: The correlations a1a2a3,
a0

1a0
2a3, a0

1a2a0
3, and a1a0

2a0
3 do not appear in M3 given in

(5). But these correlations are those that appear in M 0
3;

thus we are led to check the properties of the polynomial,

S3 �
1
2 �M3 1 M 0

3� �
1
2 �M2a0

3 1 M 0
2a3� . (10)

For both ly and 2�1S, the calculation goes as follows:
We choose a3 � a0

3 � 1, and we are left with S···
3 �

1
2 max�M2 1 M 0

2�. But M2 1 M 0
2 � a1a0

2 1 a0
1a2, which

can take the value of 2 in both ly and 2�1S. There-
fore Sly

3 � S
2�1S
3 � 1, and this implies immediately

S
2�1QM
3 � 1 since 2�1QM is more general than ly and

is a particular case of 2�1S. The algebraic maximum is
obviously S

alg
3 � 2. We have to find S

3QM
3 . As above, we

define an operator S3 by replacing the a’s in the polyno-
mial S3 with Pauli matrices. On the one hand, we have

Tr�rS3� � 1
2 �Tr�rM2sa0

3
� 1 Tr�rM0

2sa3
�� #

p
2 ,
(11)
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since by the Cirel’son theorem [9] each term of the sum is
bounded by

p
2. On the other hand, we know [10] that the

eigenvector associated to the maximal eigenvalue for such
an operator is the GHZ state �1�

p
2 � �j000� 1 j111��. For

some settings [11], we have �GHZjS3jGHZ� �
p

2: The
bound can be reached; that is, S

3QM
3 �

p
2. Thus, the GHZ

state generates genuine three-party nonseparability (non-
locality). We note that, in fact, S3 is one of Svetlichny’s
two inequalities [the second inequality is equivalent, and is
associated to 1

2 �M3 2 M 0
3�].

The results for Mermin’s and Svetlichny’s inequalities
for three particles are summarized in Table I. We see that
combining Mermin’s and Svetlichny’s inequalities one can
discriminate between the five models for correlations that
we consider in this paper. This concludes our study of the
case of three particles.

Four particles.—As above, we begin by considering
the MK polynomial M4. Like M2, and unlike M3, the
polynomial M4 is a linear combination of the correla-
tion coefficients of all measurements. From the gen-
eral properties of the MK inequalities [4], the following
bounds are known: Mly

4 � 1, M
1�1�2QM
4 � M

2�2QM
4 �

p
2, M

3�1QM
4 � 2, M

4QM
4 � 2

p
2. The algebraic limit is

M
alg
4 � 4 (sixteen terms in the sum, and a factor 1

4 in front
of all).

Now we have to provide the bounds for 1�1�2S, 2�2S,
and 3�1S. This last one can be calculated in the same
way as above: using (3), we have M4 �

1
2M3�a4 1 a0

4� 1
1
2M 0

3�a4 2 a0
4�; we set a4 � a0

4 � 1, and, since we allow
the most general correlation between the first three parti-
cles, we have maxM3 � M

alg
3 � 2. Therefore M

3�1S
4 � 2.

One must be more careful in the calculation of 1�1�2S
and 2�2S. This goes as follows: Using (6), we have
M4 �

1
2M1,2�M3,4 1 M 0

3,4� 1
1
2 M 0

1,2�M3,4 2 M 0
3,4�, where

to avoid confusion we wrote Mi,j instead of M2, with i and
j the labels of the particles. Now, M3,4 1 M 0

3,4 � a3a0
4 1

a0
3a4, and M3,4 2 M 0

3,4 � a3a4 2 a0
3a0

4. So, if we allow
the most general correlation between particles 3 and 4,
these two quantities are independent and can both reach
their algebraic limit, which is 2. Consequently, for both
1�1�2S and 2�2S we obtain M ···

4 � max�M1,2 1 M 0
1,2�,

which is again 2 in both cases. So, finally,

M
1�1�2S
4 � M

2�2S
4 � M

3�1S
4 � 2 , M

4QM
4 � 2

p
2 .
(12)

TABLE I. Maximal values of M3 and S3 under different as-
sumptions for the nature of the correlations (see text). The last
line is the product of the two values.

3S
ly 2�1QM 2�1S 3QM (algebraic)

M3 1
p

2 2 2 2
S3 1 1 1

p
2 2

product 1
p

2 2 2
p

2 4
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For four particles, the MK polynomial M4 detects both
four-particle entanglement (this was known) and four-
particle nonseparability, and is therefore the natural
generalization of Svetlichny’s inequality.

Arbitrary number of particles.—For a given number of
particles n, we discuss only the maximal value allowed by
QM, that is the case nQM, against any possible partition
in two subsets of k and n 2 k particles, respectively, with
1 # k # n 2 1, that is the case k��n 2 k�S. Partitions
in a bigger number of smaller subsets are clearly special
cases of these bilateral partitions. We are going to prove
the following.

Proposition: Define the generalized Svetlichny polyno-
mial Sn as

Sn �

Ω
Mn, n even
1
2 �Mn 1 M0

n�, n odd. (13)

Then all the correlations k��n 2 k�S give the same bound
Sk

n, and the bound that can be reached by QM is higher by
a factor

p
2:

SnQM
n �

p
2 Sk

n . (14)

The tools for the demonstration are the generalization
to all the MK polynomials of the properties of M2 and
M3 that we used above: namely, (I) the algebraic limit of
Mk is M

alg
k � 2k�2 � M

kQM
k

p
2 for k even, and M

alg
k �

2�k21��2 � M
kQM
k for k odd. (IIa) For k even, Mk and

M 0
k are different combinations of all the correlation coef-

ficients; Mk 1 M 0
k and Mk 2 M 0

k contain each one-half
of the correlation coefficients, and the algebraic limit for
both is M

alg
k . (IIb) For k odd, Mk and M 0

k contain each
one-half of the correlation coefficients. These properties
are not usually given much stress, but can indeed be found
in [4], or easily verified by direct inspection.

Let us first prove the proposition for n even. In this case,
the QM bound is known to be SnQM

n � 2�n21��2. As in the
case of four particles, to calculate Sk

n we must distinguish
two cases.

(i) For k and n 2 k even: in (6), both Mk 1 M 0
k

and Mk 2 M 0
k can be maximized independently because

of property (IIa) above; therefore, we replace them by

M
alg
k . We are left with Sk

n �
1
2 M

alg
k max�Mn2k 1 M 0

n2k�,
and this maximum is again M

alg
n2k. So, finally,

Sk
n �

1
2 M

alg
k M

alg
n2k � 2�n22��2.

(ii) For k and n 2 k odd: in (6), Mn2k and M 0
n2k can

be optimized independently because of (IIb) above. We
have then Sk

n � M
alg
n2k maxMk � M

alg
n2kM

alg
k � 2�n22��2.

Thus, we have proven the proposition for n even.
To prove the proposition for n odd, we must calculate

both Sk
n and SnQM

n . We begin with Sk
n . Inserting (6) in the

definition of Sn for n odd, we find

Sn �
1
2Mn2kM 0

k 1
1
2M 0

n2kMk . (15)

Without loss of generality, we can suppose k odd and
n 2 k even. Therefore, if we assume correlations k��n 2
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k�S, Mk and M 0
k can both reach the algebraic limit due to

property (IIb). So Sk
n �

1
2 M

alg
k max�Mn2k 1 M 0

n2k�; and
due to property (IIa) this maximum is M

alg
n2k . Thus Sk

n �
2�n23��2. Let us calculate SnQM

n . From the polynomial Sn

given by (15), we define the operator Sn in the usual way.
Therefore for the particular case k � 1 we have

Tr�rSn� �
1
2 �Tr�rMn21sa0

n
� 1 Tr�rM0

n21san �� ,
(16)

which is bounded by 2�n22��2 because each of the terms
in the sum is bounded by that quantity. This bound is
reached by generalized GHZ states, for suitable settings
[11]. Therefore SnQM

n � 2�n22��2 for n odd, and we have
proven the proposition also for n odd.

In conclusion, n-particle entanglement and n-particle
nonseparability are a priori different concepts. We have
shown that it is possible to discriminate quantum entan-
glement, not only against local variable models, but also
against all possible hybrid models k��n 2 k�S, allowing
arbitrarily strong correlations inside each subset but no cor-
relation between different subsets. Experiments aimed at
demonstrating n-particle entanglement should be analyzed
using the generalized Svetlichny inequalities described in
this Letter [12].
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