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Divergence-Free WKB Method
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A new semiclassical approach to the linear and nonlinear one-dimensional Schrödinger equation is
presented. For both equations our zeroth-order solutions include nonperturbative quantum corrections to
the WKB solution and the Thomas-Fermi solution, thereby allowing us to make uniformly converging
perturbative expansions of the wave functions. Our method leads to a new quantization condition that
yields exact eigenenergies for the harmonic-oscillator and Morse potentials.
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The WKB method allows one to derive expressions for
various quantum-mechanical quantities when the action is
much larger than h̄, and has been widely used in many
fields of physics and chemistry [1–4]. However, the WKB
method has a serious flaw in the divergence at the classical
turning point because it is based on singular perturbation
theory [5,6]. According to theory, only the zeroth-order
solution is nonsingular but higher-order solutions are in-
creasingly more singular. Since the WKB method takes the
classical action as the zeroth-order solution, the singularity
already appears in terms of the order of h̄0 (prefactor). This
Letter presents a new semiclassical method in which non-
perturbative quantum corrections are incorporated into the
zeroth-order solution. Although our method is also based
on singular perturbation theory, it allows us to obtain a
uniformly valid wave function by solving the connection
problem. Moreover, our method provides a uniformly valid
solution to the nonlinear Schrödinger equation (NLSE) on
an equal footing.

We begin by reviewing the WKB method for the one-
dimensional linear Schrödinger equation (LSE)
2

h̄2

2m
d2C

dx2 1 VC � EC. Rescaling the length and the
energy in units of l and h̄2�2ml2, respectively, where l
is a characteristic length scale of the potential V �x�, LSE
takes the form

2C00 1 VC � EC , (1)

where the primes denote the differentiation with respect
to x. In Eq. (1), the length x and the energies E, V are
proportional to h̄0 and h̄22, respectively. Introducing w�x�
through C�x� � ew�x�, where w�x� is measured in units of
h̄, Eq. (1) reduces to

�w0�2 1 E 2 V � 2w00. (2)

We note that �w0�2, E 2 V , and w00 are proportional to
h̄22, h̄22, and h̄21, respectively. The zeroth-order WKB
solution w

0
WKB,0, which is obtained by neglecting w00 in

Eq. (2), satisfies

�w0
WKB,0�2 1 E 2 V � 0 . (3)

Incorporating the effect of w00 perturbatively, the WKB
0031-9007�02�88(17)�170404(4)$20.00
solution w
0
WKB takes the familiar form as

w0
WKB � 6i

p
E 2 V 2

1
4

V 0

V 2 E
1 · · · , (4)

where the first and second terms are proportional to h̄21

and h̄0, respectively. Equation (4) clearly shows that the
singularities of w

0
WKB do not move upon improving the

order of perturbation. This is an unavoidable feature of
singular perturbation theory [5,6].

Our strategy is to incorporate quantum corrections in
the zeroth-order solution. To do this, we differentiate both
sides of Eq. (2) with respect to x, obtaining 2w0w00 2

V 0 � 2w000. Substituting w00 in Eq. (2) into this yields

�w0�3 1 �E 2 V�w0 1 V 0�2 � w000�2 . (5)

We note that �w0�3, �E 2 V �w0, V 0, and w000 are pro-
portional to h̄23, h̄23, h̄22, and h̄21, respectively. The
Schrödinger equation (1) is sufficient for Eq. (5) to hold,
but it is not necessary. In fact, Eq. (5) can be written as
2w0�w00 1 �w0�2 1 E 2 V � �

d
dx �w00 1 �w0�2 1 E 2 V �

and integrated as ge2w � w00 1 �w0�2 1 E 2 V , where g
is a constant of integration. This equation is equivalent to

2C00 1 VC 1 gC3 � EC . (6)

This is nothing but NLSE, which includes LSE as a par-
ticular case of g � 0.

Our zeroth-order solution w
0
0, which is obtained by ne-

glecting w000 in Eq. (5), satisfies

�w0
0�3 1 3pw0

0 1 2q � 0 , (7)

where p � �E 2 V��3 and q � V 0�4. Comparing
Eqs. (5) and (7) with Eqs. (2) and (3), respectively, we
see that our method is a natural extension of the WKB
method. As we show below, our zeroth-order solution
w

0
0 includes nonperturbative effects, and, when expanded

in powers of h̄, agrees with the WKB solution (4) up
to O �h̄0�. For D � p3 1 q2 . 0, Eq. (7) has three
solutions: one is real and the rest are complex conjugate.
For D , 0, all three solutions are real. A root of the
discriminant of Eq. (7), D � 0, therefore determines our
turning point x � x�q� [note that k�x�q�� � 0 in Eq. (10)].
© 2002 The American Physical Society 170404-1
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The difference between x�q� and the classical turning point
x�c� is expanded as

x�q� 2 x�c� �
3
2

�2V 0�x�c���21�3

µ
1 1

e

2
1 O �e2,d�

∂
,

(8)

where e � V 00�x�c�� �2V 0�x�c���24�3 and d � V 000�x�c�� 3

�2V 0�x�c���25�3. We note that the right-hand side of Eq. (8)
gives a characteristic decaying length of the wave function
in the classically forbidden region [see Eq. (18)]. Our
turning point x�q� therefore includes quantum corrections.

In the allowed region (D . 0), Eq. (7) has the following
three solutions:

w0
0 �

8<
:

2k ,
k�2 1 ik � w0

1 ,
k�2 2 ik � w0

2 ,
(9)

where k�x� � �q 1
p

D �1�3 1 �q 2
p

D �1�3 and

k�x� �
p

3
2

��q 1
p

D �1�3 2 �q 2
p

D �1�3� . (10)

When expanded in powers of h̄, Eq. (9) reduces to

w0
0 �

8>><
>>:

2k �
1
2

V 0

V2E 1 O �h̄2� ,

w0
1 � i

p
E 2 V 2

1
4

V 0

V2E 1 O �h̄1� ,

w0
2 � 2i

p
E 2 V 2

1
4

V 0

V2E 1 O �h̄1� .
(11)

where 2k and w0
6, respectively, agree with the Thomas-

Fermi solution [7–9] and the WKB solutions (4) up to
O �h̄1� and O �h̄0�. Substituting Eq. (11) into Eq. (6)
yields

gC2 �

8<
:

E 2 V 1 O �h̄0� for w
0
0 � 2k ,

O �h̄0� for w
0
0 � w0

1 ,
O �h̄0� for w

0
0 � w0

2 .
(12)

In the forbidden region (D , 0), Eq. (7) has the follow-
ing three real solutions:

w0
0 �

8>>><
>>>:

72
p

2p cos� 1
3 arctan

p
2D
jqj � � 2k ,

72
p

2p cos� 1
3 arctan

p
2D
jqj 1

2p

3 � � x 0
1 ,

72
p

2p cos� 1
3 arctan

p
2D
jqj 2

2p

3 � � x 0
2 ,

(13)
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where the 2 and 1 signs correspond to V 0 . 0 and V 0 ,

0, respectively. When expanded in powers of h̄, Eq. (13)
reduces to

w0
0 �

8>><
>>:

2k � 7
p

V 2 E 2
1
4

V 0

V2E 1 O �h̄1� ,

x 0
1 � 6

p
V 2 E 2

1
4

V 0

V2E 1 O �h̄1� ,

x 0
2 �

1
2

V 0

V2E 1 O �h̄2� .

(14)

Thus 2k and x 0
1 agree with the WKB solutions (4) up to

O�h̄0�. Substituting Eq. (14) into Eq. (6) yields

gC2 �

8<
:
O �h̄0� for w

0
0 � 2k ,

O �h̄0� for w
0
0 � x 0

1 ,
E 2 V 1 O �h̄0� for w

0
0 � x 0

2 .
(15)

Because our method is based on singular perturbation the-
ory, w0

6 in Eq. (9) and x 0
6 in Eq. (13) are discontinuous at

x�q�. However, Eq. (7) has a third solution, 2k, which is
real and has no discontinuities. As we shall see later, this
solution 2k allows us to construct uniformly valid wave
functions for both LSE and NLSE.

To proceed further with our analysis, we assume
that E _ V�x� for x + x�c� with E � V�x�c��. The
wave function must then decay to zero as x ! `, i.e.,
limx!`C�x� � 0. Consequently, in the forbidden region
(D , 0), 2k must be chosen as the zeroth-order solution
w

0
0 for both LSE and NLSE. For NLSE, gC2 � O �h̄0� in

Eq. (15) does not mean g � 0 but that the wave function
is sufficiently attenuated in the forbidden region.

We are now in a position to construct our zeroth-order
solutions to LSE and NLSE. For NLSE, by using Eq. (12)
to select the appropriate solution, the zeroth-order solution
becomes

CNL
0 �x� � N exp

µ
2

Z x

x�q�
dx0 k�x0�

∂
, (16)

where N is a normalization constant. Note that this single
solution covers both allowed and forbidden regions. There-
fore, C

NL
0 is uniformly valid.

For LSE, from Eq. (12), we find that the zeroth-order
solution C0�x� is described, in general, as
C0�x� �

Ω
CI�x� � A1 exp���

Rx
x�q� dx0 w0

1�x0���� 1 A2 exp���
Rx

x�q� dx0 w0
2�x0���� �x , x0� ,

CII�x� � exp��� 2
Rx

x�q� dx0 k�x0���� �x . x0� , (17)
where x0�,x�q�� is a connection point to be determined
later. The type-I solution CI�x� is defined for x , x�q�,
while the type-II solution CII�x� is smooth for x [ R. We
now solve the connection problem. To determine the rela-
tion between constants A1 and A2, we note that, near x�c�,
LSE (1) reduces to 2d2C�dj2 1 jC � 0, where j �
�V 0�x�c���1�3�x 2 x�c��. The exact solution to this equation
that satisfies the boundary condition limj!`C�j� � 0 is
the Airy function Ai�j� [10]. In the region jjj ¿ 1, the
asymptotic forms of Ai�j� are

Ai�j� �

8<
:

�2j�21�4
p

p sin���2
3 �2j�3�2 1

p

4 ��� �j , 0� ,
j21�4

2
p

p exp�2 2
3j3�2� �j . 0� .

(18)

For the linear potential, where p � 2�V 0�x�c���2�3j�3 and
q � V 0�x�c���4, one can perform integrations in Eq. (17)
170404-2
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to obtain asymptotic behavior for jjj ¿ 1 as [11]

C0 �

(
CI � �2e2�21�3�2j�21�4�A1 exp��� 2 i� 2

3 �2j�3�2 1
p

4 	��� 1 A2 exp���i�2
3 �2j�3�2 1

p

4 	���� �j , 0� ,

CII � �2e5�1�6j21�4 exp�2 2
3j3�2� �j . 0� .

(19)

For Eq. (19) to match Eq. (18), we must choose A1�A2 � 21. The zeroth-order solution (17) can thus be described as

C0�x� �

(
CI�x� � A exp���1

2

Rx
x�q� dx0 k�x0���� sin���

Rx�q�

x dx0 k�x0���� ,
CII�x� � exp��� 2

Rx
x�q� dx0 k�x0���� ,

(20)

where A � 72iA6. In Eq. (20), for C0 and C
0
0 to be continuous at a certain point x0, i.e., CI�x0� � CII�x0� and

C
0
I�x0� � C

0
II�x0�, A and x0 must satisfy [12]

tan

µZ x�q�

x0

dx k�x�
∂

�
2k�x0�
3k�x0�

and A � exp

µ
3
2

Z x�q�

x0

dx k�x�
∂

csc

µZ x�q�

x0

dx k�x�
∂

. (21)
Equations (21) have a unique solution x0 near x�q� such
that x0 , x�q�, because CI is upwardly convex and CII is
downwardly convex there. While CI ceases to be valid at
x�q�, we have avoided using it at x�q� by matching the wave
functions at x0�,x�q��. Our solution C0 constructed above
is therefore uniformly valid. Our method is based on the
cubic algebraic equation that yields a third, nonsingular
solution 2k and shifts the connection point from x�q� to
x0. It is due to this shift of the connection point that our
connected wave function C0 is free from divergence in any
order of perturbation.

We now derive a quantization condition by assuming
that limjxj!`V �x� . E. Since Eq. (20) vanishes at x�q� for
any potential, we have

1
2p

I
dx k�x� �

1
p

Z x
�q�
R

x
�q�
L

dx k�x� � n 1 1 , (22)

where k�x� is defined in Eq. (10), n � 0, 1, 2, . . . is the
number of nodes of the wave function, and the suffixes
L and R refer to the left and right turning points, re-
spectively. Equation (22) is to be contrasted with the
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FIG. 1. Zeroth-order C0 (dashed curve) and first-order C1
(dot-dashed curve) solutions to LSE for the linear potential
2d2C�dj2 1 jC � 0. The exact solution (solid curve) and
the usual WKB solution (dotted curve) are superimposed for
comparison. The region around the turning point is enlarged in
the inset.
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WKB quantization condition 1
2p

H
dx

p
E 2 V�x� �

1
p

Rx
�c�
R

x
�c�
L

dx
p

E 2 V �x� � n 1 1
2 . For the harmonic-

oscillator and Morse potentials, we can evaluate the inte-
gral in Eq. (22) by transforming it to a contour integral on
the complex torus that is defined by the algebraic equation
derived from Eq. (7). For the harmonic-oscillator and
Morse potentials, the eigenvalues thus calculated are
found to be exact [11].

We have so far ignored the term w000�2 on the right-hand
side of Eq. (5). The effect of this term can be evaluated
perturbatively, giving w

0
1 � w

000
0 ��6����w0

0�2 1 p����. The
first-order solution C1�x� can be constructed by using
w

0
0 1 w

0
1 instead of w

0
0. We apply C0 [see Eqs. (16) and

(20)] and C1 to the linear (Figs. 1 and 2), harmonic-
oscillator (Fig. 3), and Morse (Fig. 4) potentials. We
also compare them with the exact, WKB, and combined
Thomas-Fermi and WKB solutions. The zeroth-order
connected wave function C0 does not diverge at any point,
as expected from singular perturbation theory, whereas
the error is discernible at about x�c�. We remark that the
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FIG. 2. Zeroth-order C0 (dashed curve) and first-order C1
(dot-dashed curve) solutions to NLSE for the linear potential
2d2C�dj2 1 jC 1 C3 � 0 [13]. The exact solution (solid
curve) and a combined Thomas-Fermi and WKB solution (dot-
ted curve) are superimposed for comparison. The region around
the turning point is enlarged in the inset.
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FIG. 3. Solutions to LSE for the harmonic-oscillator potential
V � x2 with E � 17. The notations are the same as those in
Fig. 1. The region around the turning point is enlarged in the
inset.

first-order connected wave function C1 also does not
diverge anywhere [14], and the small discrepancy is seen
to be drastically improved by C1.

In conclusion, we have proposed a new “cubic-WKB”
method that enables us to solve LSE and NLSE on an equal
footing. Our zeroth-order solution is constructed upon a
trajectory that includes nonperturbative quantum correc-
tions, thereby allowing a uniformly converging perturba-
tive expansion of the wave function. Our method is based
on singular perturbation theory and is thus a natural ex-
tension of the WKB method [15]. It may be applied to
drastically improving related semiclassical methods such
as instantons [16–19] and periodic orbit theory [20].
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tific Research (Grant No. 11216204) by the Ministry of
Education, Science, Sports, and Culture of Japan, and by
the Toray Science Foundation.
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FIG. 4. Solutions to LSE for the Morse potential V �
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two turning points are enlarged in the insets.
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