
VOLUME 88, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 22 APRIL 2002

16680
Broken Unitarity and Phase Measurements in Aharonov-Bohm Interferometers
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Aharonov-Bohm mesoscopic solid-state interferometers yield a conductance which contains a term
cos�f 1 b�, where f relates to the magnetic flux. Experiments with a quantum dot on one of the
interfering paths aim to relate b to the dot’s intrinsic Friedel transmission phase a1. For closed systems,
which conserve the electron current (unitarity), the Onsager relation requires that b � 0 or p . For open
systems, we show that in general b depends on the details of the broken unitarity. Although it gives
information on the resonances of the dot, b is generally not equal to a1. A direct relation between b

and a1 requires specific ways of opening the system, which are discussed.
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The wave nature of an electron is reflected, e.g., by
the complex amplitude of the wave transmitted through
a quantum scatterer. Under appropriate conditions (dis-
cussed below), Aharonov-Bohm (AB) [1] interferometers
may be regarded as analogs of the double-slit experi-
ment [2,3], in which the transmission through two paths
is T � jt12j

2, with

t12 � t1 1 t2eif, (1)

where f � eF�h̄c, F being the magnetic flux enclosed
by the two paths. The path amplitudes ti � jti jeiai may
contain the effects of obstacles [4], e.g., a quantum dot
(QD) on path 1, whose nontrivial (gate voltage dependent)
transmission phase a1 can be influenced by electronic cor-
relations [5,6]. Assuming the two-slit formula, Eq. (1), the
Landauer conductance [7] through the interferometer G �
�e2�h�T then includes the term [8] cos�a2 2 a1 1 f�,
which is sensitive to the phase difference. However, in
“closed” or “unitary” interferometers (inside which the
electron number is conserved), time-reversal symmetry im-
plies the Onsager relation [9], G�F� � G�2F�. This re-
lation holds for both finite and infinite systems. Hence, T
must depend on f via cosf, with no phase shift. Here we
show that broken unitarity does yield a term cos�f 1 b�,
where b depends in general on the rate and on the de-
tails of the electron loss. The universally assumed equality
b � a2 2 a1 requires special ways of opening the sys-
tem, which we discuss below (in the context of some of the
experiments [5,6,10,11]). Specifically, we present an ex-
act example in which this relation does not hold, and then
discuss possible conditions under which it might hold.

We consider solid-state interferometers, with narrow
waveguides for the electron paths, restricted to the meso-
scopic scale in order to retain the coherence of the con-
duction electrons [12]. AB oscillations in G�F� (in spite
of strong impurity scattering), first suggested in Ref. [13],
were subsequently observed on metallic closed systems
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[14] and in semiconducting samples containing QDs near
Coulomb blockade (CB) resonances [4,15]. In these
experiments G�F� � G�2F�, as required by the Onsager
symmetry. Further experiments [5,6,10,11] used open
systems, in which electrons are lost via additional channels
which leave the interferometer, to obtain a nonzero phase
shift b. Assuming that b � a2 2 a1, some of the sur-
prising experimental results were inconsistent with the
theoretical expectations for the phase a1 of the intrinsic
transmission through the QD [16–19]. Examples include
the phase lapse between consecutive CB resonances
[10,11] and the nonuniversal phase shifts at the Kondo
resonances [5,6].

While this paper solves specific theoretical models, the
results can be cast in terms of the various energy scales
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FIG. 1 (color). Simple model for a QD (denoted by D) con-
nected to one-dimensional leads. (a) A closed system, with no
electron losses. (b) An open system, with a third lead, which
connects the QD to a fully absorbing reservoir R.
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(e.g., decay widths) characterizing the system. Thus they
are much more general than the models employed. Below
we expound the underlying model-independent physical
principles behind these results.

We first consider a single path, and then connect two
paths into an AB interferometer. The QD transmission is
typically [16,17] defined by the geometry in Fig. 1a: a dot
D is placed on a one-dimensional conductor (described
below by a tight-binding model), which models the narrow
electronic waveguides (“leads”). An electron wave with
amplitude 1 coming from A (or B) generates a transmitted
wave with amplitude t1 (or t01), and a reflected wave with
amplitude r1 (or r 01). This is described by the 2 3 2
scattering matrix, S2 � � r1

t1

t01
t1

�, mapping the two-
component vector of incoming amplitudes onto those of
outgoing ones. Unitarity implies that the determinant
of S2 is r1r 01 2 t1t01 � e2ia1 , and a1 is defined (for the
specific geometry of Fig. 1a) as the intrinsic Friedel
phase [16,17] of the QD. At zero temperature, and for
electrons on the Fermi surface, a1 is equal to the phase of
the Green function on the QD [17],

G
�a�
D � 1��eq 2 e0 1 eiqaXLR �J� , (2)

where XLR � J2
L 1 J2

R , JL, JR represent the quantum hop-
ping into D from left or right, J is the (tight binding)
hopping between neighboring sites on the leads (with lat-
tice constant a), eq � 22J cos�qa� is the energy (taken
equal to the Fermi energy) of an electron with wave vector
q, and e0 denotes the potential energy on the dot, deter-
mined by the gate voltage. The real parameters JL, JR ,
and �eq 2 e0� may be renormalized by the Coulomb in-
teractions on the dot, so that a1 contains the effects of the
interactions [20]. Whenever the gate voltage yields a reso-
nance, i.e., when the real part of the denominator changes
sign, a1 increases by p. The width of this jump, given
by the imaginary part of �G�a�

D �21, is determined by XLR ,
GR � sin�qa�XLR�J.

A particular way to break unitarity between A and B is
described in Fig. 1b: a third lead connects the QD to an
absorbing electron reservoir R [21] (i.e., with a chemical
potential which is slightly lower than that on the emitting
source, similar to that of the absorbing sink). This QD is
described by a unitary 3 3 3 scattering matrix S3, related
to the leads from D to A, B and R. However, the 2 3 2
matrix S2, which is now a submatrix of S3, need not be
unitary. An explicit calculation with such a hopping Ham-
iltonian yields that the transmission phase now becomes
a1, equal to the phase of the renormalized Green function,
G

�b�
D � 1���G�a�

D �21 2 S�, where the complex self-energy
S depends on details of the absorbing lead. In the sim-
plest case where D is connected to R by the hopping am-
plitude V1, we have S � 2�V 2

1 �J�eiqa. In particular, its
imaginary part, which is proportional to the rate of elec-
tron losses through that lead, contributes to the total width
of the resonance. Thus, the phase a1 measured in this
case is in general not the intrinsic transmission phase of
166801-2
the QD, a1. In fact, for V 2
1 ¿ XLR this contribution of

the imaginary self-energy will be larger than the intrinsic
one. It is only when V 2

1 ø XLR that a1 � a1. This dis-
tinction is similar to the one obtained in the usual two-slit
diffraction experiment [2] in the following circumstance:
inserting an isotropic resonance scatterer in the upper slit
causes the upper beam to acquire an additional phase shift.
Connecting the source, the scatterer and the screen via a
narrow waveguide produces qualitatively similar results,
except that the width Gt is now replaced by the typically
much smaller width G of the resonance against decay into
the waveguide. G is modified whenever one changes the
channels through which the scatterer can decay.

We next place either Fig. 1a or 1b as path 1 in the
AB interferometer, as in Figs. 2a or 2b, and calculate the
transmission amplitude t for an electron going from X to
Y. For simplicity, we include only one (real, except for the
AB phase f) hopping matrix element between the sites AD
�JL�, DB �JR�, and AB �V �. In the unitary case (Fig. 2a),
we find

t � CGD�V �eq 2 e0� 2 JLJReif� , (3)

where GD is the fully renormalized Green function of the
dot (containing the effects of all the leads),

�GD�21 � eq 2 e0 1
JXLR 1 2VJLJR cosfeiqa

J2e2iqa 2 V2eiqa ,

(4)

and C � 2iJ sin�qa���V 2eiqa 2 J2e2iqa� is a smooth
function of the parameters.

Note that a1 dropped out from the square brackets in
Eq. (3), which represent the interference: the coefficients
inside the brackets are real, and T � jtj2 depends on f

only through cosf, as expected from Onsager. GD does
depend on a1 and on f, but its dependence on f is also
only via cosf. The coefficient of cosf in T , which has
contributions from both JLJRV�eq 2 e0� and the expan-
sion of GD in a Fourier series in f, changes sign as e0
increases, yielding a sharp jump of the phase shift by p.
The vanishing width of this jump is independent of the
dot’s intrinsic Friedel phase a1.

We now break unitarity, as in Fig. 2b. Our calculation
yields a similar expression, except that e0 is now replaced
by the complex e0 1 S. Thus, the absolute value of the
square brackets in Eq. (3) now contains a term proportional
to cos�b 1 f�, with

tanb � 2ImS��eq 2 e0 2 ReS� . (5)

This behavior is portrayed in Fig. 3 (plotted with parame-
ters for which the dependence of GD on cosf is weak).
Note that b is fully determined by the electron loss into
the reservoir R, and it has no dependence on the intrinsic
QD transmission phase a1, which follows from Eq. (2).
Nevertheless, b will change by p across any resonance,
where �eq 2 e0 2 ReS� changes sign (up to a shift due
to the harmonics of GD ). The width of this change is
166801-2
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FIG. 2 (color). AB interferometers, with a magnetic flux f
inside the ring. The text describes calculations of the transmis-
sion amplitude of a wave from terminal X to terminal Y, for a
tight-binding model with single real hopping matrix elements
between A and D (JL), D and B (JR), and on the lower path,
from A to B (V). (a) A closed system. (b) Electrons are lost
from the QD via a link to the absorbing reservoir R. (c) Elec-
trons are lost via links to the absorbing reservoirs RA and RB.
In the case discussed in the text, these losses “conspire” to have
full reflection of waves approaching A and B from either path
within the ring. (d) Same as (c), with the additional loss from
D into R.

determined by ImS, i.e., by the rate of electron loss from
the QD, and not by the intrinsic properties of the dot. In
a similar fashion, the phase shift b will exhibit a plateau
near p�2 whenever jImSj ¿ jeq 2 e0 2 ReSj. Such a
166801-3
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FIG. 3. The transmission from X to Y in Fig. 2b, as function
of the AB phase f; J � 1, JL � JR � 0.1, V � 0.01, qa �
p�2, e0 � 0.1. The extrema of the curve shift by the phase b
(indicated by a point on each curve), increasing as V1, which
measures the rate of electron losses to the reservoir R, grows
from 0 to 0.35 (in steps of 0.05). Note that the total magnitude
of the transmission decreases with V1, reflecting the same losses.

plateau is a hallmark [5] of the Kondo effect. However,
establishing its connection to Kondo physics requires more
evidence (such as the enhanced conductance in the CB
valley, found in [5]).

The physical reason for the Onsager symmetry is clear:
the electron wave encircles the interferometer and is re-
flected from the junctions at A and B many times, compli-
cating the simple two-slit formula, Eq. (1). Indeed, our
derivation of Eq. (3) shows that the cancellation of the
phase difference a2 2 a1 from inside the square brack-
ets occurs at each order in the summation over all of these
reflections. As already hinted in Ref. [2], the two-slit for-
mula requires total absorption on the junction B (for waves
approaching it from the two paths in the AB ring), thus
breaking unitarity at or before this point. In fact, a suffi-
cient condition for this formula is that there be no reflec-
tions from B backwards to D and A, and similarly from A
back towards D and B. One theoretical way to achieve this
is shown in Fig. 2c: attach to each junction an additional
lead to a fully absorbing reservoir. The full four-link point
is now described by a unitary 4 3 4 scattering matrix. One
possibility for such a matrix at point B is

S4 �

0
BB@

0 0 cosv 2 sinv

0 0 sinv cosv
cosv sinv 0 0

2 sinv cosv 0 0

1
CCA , (6)

in which the rows represent RB, Y, A, and D. Such a matrix
would arise, e.g., for a semitransparent mirror placed at B,
at 45± with the four orthogonal links. Clearly, the 3 3 3
submatrix corresponding to Y, A, and D is not unitary;
however, its zeros ensure no reflections back into the ring.
Introducing a similar matrix at A then yields the two-slit
formula, Eq. (1). Nonetheless, note that the above ma-
trix S4 has not been derived from a microscopic model
(however, similar elements do exist for microwaves [22]).
Such a derivation for electrons on single-channel leads may
166801-3
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require more absorbing leads (i.e., a larger initial scattering
matrix), or more complicated elements. Furthermore, this
matrix has a special and restricted form, and it is not obvi-
ous how to achieve it experimentally. Finally, the two-slit
formula so obtained contains the transmission amplitudes
t1 and t2 of the two individual paths, and these depend
on all the internal details of these paths, including losses
(e.g., as shown in Fig. 2d). The amplitude t1 will have the
desired intrinsic phase a1 of the QD only when, in addi-
tion to the total absorption on junctions A and B, the width
of the dot’s resonating state against losses to all available
channels is much smaller than the intrinsic width of the
resonance, GR .

In real experiments [3,5,10,11], additional leads are at-
tached to the ballistic arms of the interferometer, between
the dot and the “forks” of the interferometer [23]. These
leads are “lossy,” as reflected by the small fraction of the
current coming out of the interferometer. When the losses
occur within the back-and-forth reflections of the reso-
nance itself, then the measured phase will be mainly due
to those losses, similar to our calculations for Fig. 2b. In
that case, the AB phase shift b continues to grow with V1,
with no connection to a1. Alternatively, one could have
many weakly coupled absorbing leads along the conduct-
ing paths between the QD and the junctions A or B, outside
of this “rattling” region. Under appropriate conditions, the
reflections from A and B back into the ring (through the
junctions to these leads) become negligible, the two-slit
limit is reached and b saturates at the intrinsic QD trans-
mission phase a1 for a large number of such leads [24].
Thus, an appropriate specific design of the unitarity break-
ing in the experiments should recover the two-path inter-
ference. Considering some of the qualitative results found
in Ref. [11] and in consecutive work, it is quite possible
that these experiments did contain such a design. A quan-
titative measurement of the dependence of the measured
phase shift b on the strength of the losses could confirm
this possibility.

Two final comments. First, note that in the unitary case,
the interference part of the transmission [square brackets
in Eq. (3)] is real at zero flux. It may therefore be tuned
to vanish as a function of a single control parameter. Such
vanishing may result in a sharp jump of the phase shift
measured in the experiment, from 0 to p or vice versa [25].
This entails the same physical mechanism as the one ap-
pearing in the Fano line shape [26] (see, e.g., Refs. [18,19]
for related suggestions). These considerations may explain
some of the aforementioned experimental puzzles. Second,
unitarity would also be broken with emitting, rather than
absorbing, additional channels. In view of the lossy exper-
iments, we preferred to concentrate on the latter.
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