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Total Energy Method from Many-Body Formulation
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The fruitfulness of traditional many-body Green’s function theory for calculating the total energy of
real systems is demonstrated using the random phase approximation in the Luttinger-Ward formulation.
As the first application to a real system, the total energy of H2 is calculated as a function of nuclear
separation and compared with the configuration interaction and the local density approximation results.
While the local density result is in large error for large separations, the present approach gives satisfactory
agreement with the configuration interaction results. The method is promising as an alternative to the
quantum Monte Carlo technique.
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Total energies of electronic systems are undoubtedly
one of the most important quantities in material science
since total energies determine the structural properties of
materials. The most widely used total energy method is
the density functional theory [1] within the local density
approximation (LDA) [2] or the generalized gradient ap-
proximation (GGA) [3]. These approximations have
proven to be highly successful for many materials. How-
ever, there is evidence that these methods are not suffi-
ciently accurate for a number of cases. A serious problem
is revealed in the case of strongly correlated materials
involving the presence of 3d elements where LDA (or
GGA) qualitatively fails in predicting the structure of
many of these materials. To cite some examples, LaMnO3,
a material famous for its colossal magnetoresistance, and
La2CuO4, a well-known high temperature superconduct-
ing parent compound, are predicted to be metals by
LDA, whereas experimentally they are antiferromagnetic
insulators [4]. In addition, there are systematic errors of
quantitative nature. For example, cohesive energy is over-
estimated and the activation barrier of chemical reactions
is usually underestimated. Thus there is a strong need
for an improved practical total energy method. Quantum
Monte Carlo (QMC) technique is one such method. This
method is accurate but computationally demanding.

In this paper, a scheme based on the traditional many-
body Green’s function technique is introduced. It is not
meant as a replacement for LDA, but rather it is intended
as an alternative to QMC. This type of approach has
remained dormant for several decades due to the lack of
computational tools. With the rapid progress in computer
technology, it is now timely to reconsider this more tradi-
tional approach. Interest in this approach was rejuvenated
recently by a pioneering work of von Barth et al. [5] for
the electron gas. They discovered that, in the GW approxi-
mation [6,7], the total energy of the electron gas is of com-
parable accuracy to that of the QMC. Equally important,
Almbladh et al. [8] have also reconsidered a total energy
formulation due to Luttinger and Ward (LW) [9] and made
a generalization of it.
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A scheme based on the original LW formulation is de-
veloped, which can be applied to both molecular and solid
systems. An important feature of the LW functional is that
it is variational with respect to the Green’s function under
certain conditions. As the first application of our scheme to
real systems the total energies of H2 as a function of nuclear
separation have been calculated. H2 is a suitable test case
because there are accurate results from configuration inter-
action (CI) calculations [10] which may be considered as
exact. Besides, H2 is well known as a problematic case for
LDA. Thus, it provides a stringent test for the new scheme.
In addition, a two-site Hubbard model has been studied
to gain insights into the properties of the LW functional.

The LW energy functional in the zero temperature for-
mulation can be written as [9,11]

ELW�G� � T�G� 1 F�G� , (1)

where

T�G� � E0 1 tr�G21
0 G 2 1� 2 tr�lnG 2 lnG0� , (2)

F�G� � 2
1
2

X̀
n�1

1
n

trMnG . (3)

G0 is the Green’s function of the noninteracting system
with energy E0 corresponding to the Hamiltonian with the
Coulomb interaction switched off. Mn represents self-
energy diagrams containing �2n 2 1� Green’s function
lines. The mass operator, i.e., the self-energy including
the Hartree potential, is given by

M � 2
dF

dG
�

X̀
n�1

Mn . (4)

The tr operator is defined by tr �
i

2p

R
dr dr 0 dv eivd.

The quantity T may be interpreted as the kinetic energy
and the interaction energy with the external field, whereas
F contains the Hartree, exchange, and correlation ener-
gies. An important feature of the LW energy functional is
that it is variational with respect to G, i.e., dELW�dG � 0
provided the Dyson equation

G � G0 1 G0MG (5)

is satisfied. Thus, ELW achieves its extremum at the exact
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or self-consistent G. Because of this variational property,
the total energy corresponding to an approximate F may
remain close to its self-consistent value even with a non-
self-consistent Green’s function. This is in contrast to the
Galitskii-Migdal formula [12,13].

For practical applications, it is inevitable to resort to
approximations. As a realistic and practical approxima-
tion the random phase approximation (RPA) [13,14] is em-
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ployed for the correlation part of F:

FRPA
c � 2

1
4 tr�ln�1 2 Py� �1 2 yP� 1 Py 1 yP� .

(6)

This Hermitian form is convenient for calculations since
the eigenvalues are real. The polarization P in imaginary
frequency is given by
P�r, r 0; iv� � 2
X
s

occX
n

unoccX
m

f�
ns�r�fms�r�fns�r 0�f�

ms�r 0�
2�´ms 2 ´ns�

v2 1 �´ma 2 ´ns�2 , (7)

where �fns� and �´ns� are single-particle orbitals and energies, respectively. To calculate Fc in Eq. (6) we consider

tr ln�1 2 Py� �1 2 yP� � 2
Z `

0

dv

p

X
a

lnQa�iv� � 2
Z `

0

dv

p
ln det�1 2 P�iv�y� �1 2 yP�iv�� , (8)

where �Qa� are the eigenvalues of �1 2 Py� �1 2 yP�. The choice of the contour integration along the imaginary axis
is very desirable from a computational point of view because the function P�iv� is smooth along this axis and therefore
a Gaussian quadrature with only a few points, typically 10, can be used for performing the frequency integral [15]. The
other term in Eq. (6), 2trPy�2, is easily calculated:

2trPy�2 � 2
1
2

Z
dr dr 0

X
s

occX
n

unoccX
m

f�
ns�r�fms�r�y�r 2 r 0�fns�r 0�f�

ms�r 0� . (9)

which is not the same as the exchange energy Fx

Fx � 2
1
2

Z
dr dr 0

X
s

occX
n

occX
m

f�
ns�r�fms�r�y�r 2 r 0�fns�r 0�f�

ms�r 0� . (10)
As a simple approximation for the total energy in
Eq. (1), the exact Green’s function is replaced by the
LDA one. From the Dyson equation (5) this leads to

tr�G21
0 GLDA 2 1� � tr�VH 1 yxc�GLDA

� 22EH 2
Z

yxcr , (11)

where VH and EH are the Hartree potential and energy,
respectively, and yxc is the LDA exchange-correlation po-
tential. Furthermore, it is straightforward to show that

2tr�lnGLDA 2 lnG0� �
occX
ns

´LDA
ns 2 E0 . (12)

The LW energy functional can then be written as

ELW�GLDA� � ELDA 2 ELDA
xc 1 Fx 1 FRPA

c , (13)

where Fx and Fc are calculated using GLDA. The last
three terms represent the RPA correction to the LDA ex-
change-correlation energy.

The scheme is now applied to H2. The calculations
are performed in real space using a nonuniform grid [16].
Figure 1 shows the total energy result for the nonspin-
polarized case, which is the proper case to consider since
H2 is a closed shell molecule. The LDA parametrization
of Gunnarsson and Lundqvist [17] has been used in this
paper. The total energies around the equilibrium separa-
tion may depend significantly on which energy functional
is used. Using the von Barth–Hedin LDA parametrization
[18], for example, lowers the energy by 0.4 eV. How-
ever, at large separations (.3.5a0), which is the focus
of this paper, commonly used functionals suffer from the
well-known problem of seriously underestimating the total
energy, which is associated with the contamination of the
LDA ground-state wave function by ionic terms [20]. The
LW scheme ELW�GLDA� clearly improves substantially the
LDA results at large separations. The LW results do not
depend significantly on which GLDA is used, reflecting to
a certain extent the variational property of the LW func-
tional. For example, the result at the equilibrium separa-
tion using the Green’s function from the von Barth–Hedin
LDA parametrization [18] is essentially the same. Most of
the difference in the LDA results arises from Exc.

In Table I we list the equilibrium separation and the en-
ergy difference at nuclear separation 4.5a0 and equilibrium
separation, the latter can give some indication of the ac-
curacy of the binding energy. Both LDA and ELW�GLDA�
reproduce accurately the equilibrium separation. The LDA
energy difference, however, is in large error, whereas the
LW one is quite close to the CI result. We note that the LW
absolute energies are somewhat lower than the CI values
(Fig. 1), but, in many practical applications, it is the energy
difference that matters. For example, binding energies and
chemical potential barriers involve energy differences.

It is interesting to also calculate the total energy for
the spin-polarized LDA (LSDA) solution which can be
166401-2
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FIG. 1. The total energy of nonspin-polarized H2 as a function
of nuclear separation calculated using LDA and the LW formu-
lation according to Eq. (13) with G � GLDA. The exact (CI)
result is from Ref. [10]. For nuclear separation $3a0, a spin-
polarized solution can also be found. While the LSDA total
energy is lower than the LDA one, the LW total energy using
GLSDA is found to be almost identical to the unpolarized case.
Within the scale of the curves, ELW �GLDA� and ELW �GLSDA�
are indistinguishable.

found for nuclear separation .3.0a0. Although the LSDA
solution does not correspond to the proper solution of the
ground state (not a pure singlet) it lowers the unpolarized
LDA result since it describes the correlation better, with
one electron localized on each hydrogen site, as in the
correct solution [17]. Still, the LSDA is in significant
error at large separations. ELW�GLSDA�, on the other hand,
improves significantly the LSDA result in this region. It
is interesting to observe that E�GLSDA� gives essentially
the same result as E�GLDA�, supporting the variational
property of the LW functional. These encouraging results
are expected to improve further when the Green’s function
from the GW approximation [6,7], is used in T�G� in
Eq. (2) but with GLDA in F�G� in Eq. (3). Some evidence
and rationale for this will be given later in the case of a
two-site model.

To gain some insights into the properties of the LW
functional, it is instructive to consider a two-site Hubbard
model defined by the following Hamiltonian:

Ĥ � 2t
X

�RR0	s
ĉ
y
Rs ĉR 0s 1 U

X
R

n̂R"n̂R# . (14)

By utilizing the Dyson equation G � G0 1 G0MG, the
LW formula can take several different forms. For example,

TABLE I. The equilibrium separation, d0, and the energy dif-
ference, DE, at d � 4.5a0 and d0. The GGA data is from
Ref. [19].

LDA GGA LW�GLDA� Exact (CI)

d0 �a0� 1.40 1.40 1.40 1.40
DE (Ry) 0.40 · · · 0.34 0.33
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the second term on the right-hand side of Eq. (2) may be
replaced by trMG. These different forms are equivalent
when the exact or a self-consistent G is used. In practice,
however, one would like to use some approximate non-
self-consistent G and to avoid performing self-consistent
calculations since they are computationally very demand-
ing. It is therefore interesting to investigate which form is
most suitable for practical calculations.

Figure 2 displays the results of a number of approxi-
mations which are compared with the exact result. All
curves can be calculated analytically with the exception of
curve 5 (self-consistent GW). All approximations appear
to work well for U�2t , 1.5. However, for larger U�2t
different approximations lead to substantially different er-
rors. In this regime, the self-consistent GW result (curve
5), obtained by using the Galitskii-Migdal formula [12,13],
performs poorly. This result has already been pointed out
before by Schindlmayr et al. [21] who suggested that the
excellent self-consistent GW results for the electron gas
might be fortuitous. In some way this is more consistent
with the fact that the self-consistent GW quasiparticle en-
ergies for the electron gas have been found to be unsatisfac-
tory [5]. Similarly, self-consistent GW has been found to
overestimate the band gap in Si [22]. Self-consistent GW
appears to be nonphysical, as reflected by the violation of
the f sum rule for the polarization function [5], which can
be shown explicitly in the present two-site model.

A significantly better result than the self-consistent one
is obtained by simply using GHF in Eq. (1) (curve 4),
which is theoretically equivalent to the approach taken for
the total energy calculations of H2 described earlier.

From Fig. 2 it is clear that the best result, achieving
good agreement with the exact result extending to a strong
correlation regime, is obtained by using the Hartree-Fock
Green’s function GHF in F�G� and the one iteration GGW
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FIG. 2. The total energy of the two-site Hubbard model as a
function of U�2t using different approximations. The result
from the Galitskii-Migdal formula (not shown) is almost the
same as curve 2.
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in T �G� (curve 3). This might appear a bit puzzling
at first sight. Closer examination of the theory reveals
that this way of calculating the total energy has merit.
From curves 2 and 3 it can be concluded that the ma-
jor part of the error arises from F�GGW � which supports
the view that the polarization function constructed from
GGW entering Fc is nonphysical. From curves 3 and
4 it is evident that the main error comes from T �GHF�.
This is also reasonable since the one iteration GGW pre-
sumably describes the kinetic energy of the real system
better than does GHF. A further rationale is that by in-
serting GHF in F the term dF�dG � 2M�GHF� cancels
dT�dG � G21

0 2 G21 calculated at G � GGW , i.e., the
Dyson equation is fulfilled. This cancellation does not oc-
cur if M�GGW � is used. Thus, it is very important which
form of the LW functional should be employed in actual
calculations when approximate or nonself-consistent G is
used. It is not inconceivable that self-consistent GW is
good for weakly or moderately correlated systems such as
the electron gas [5] but not for strongly correlated systems.
It could also be that the good self-consistent GW result is
due to accidental cancellation of errors in T and F, which
does not occur in the two-site model.

From the foregoing consideration, the total energy may
improve when the following formula is used in practical
calculation of real systems:

E�G� � T�GGW �G�� 1 FRPA�G� , (15)

where G is some (noninteracting) Green’s function, e.g.,
GLDA and GGW are here the one iteration GW Green’s
function obtained from GGW � G 1 G�SGW 2 yxc�GGW ,
where yxc is the exchange-correlation potential corre-
sponding to G and SGW � iGW with a screened Coulomb
interaction W [6,7]. The one iteration GGW is preferred
over the self-consistent one since the former is physically
sound and much easier to calculate than the latter. Physi-
cally, Eq. (15) means that the kinetic energy is described
by GGW and the Hartree energy contained in F is deter-
mined by the LDA density through GLDA. Since the LDA
density is known to be accurate, so is the Hartree energy.
The correlation energy is determined within the RPA by the
polarization function of the LDA, which as argued before is
more physical than that of GGW . Equation (15) goes over
to the original LW functional in Eq. (1) (within the RPA) if
G is the self-consistent Gsc

GW since GGW �Gsc
GW � � Gsc

GW . It
is interesting to note that T�GGW 1 DG� 1 FRPA�G 1

DG� is quadratic in DG since dT�dG, calculated at
G � GGW , cancels dFRPA�dG, as discussed previously.
Applications of Eq. (15), however, require further numeri-
cal development and will be carried out in the near future.

In summary, the feasibility of calculating total energies
from the traditional many-body Green’s function theory
has been demonstrated by calculating the total energies
of H2 using the variational formulation of Luttinger and
Ward. H2 is a difficult case for LDA, in particular for large
separations. This problem is remedied by our scheme. A
166401-4
practical scheme for calculating the difficult correlation
part is presented in Eq. (8). At the simplest level of ap-
proximation (RPA), shown in Eq. (13), the calculated total
energies are already in rather satisfactory agreement with
the exact results for H2. A functional which incorporates
the Dyson equation and uses a nonself-consistent G is con-
structed, as described in Eq. (15). Further improvement is
anticipated when this higher level approximation is used.
The present method is promising as an alternative to the
more expensive QMC approach.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] See, e.g., J. P. Perdew, K. Burke, and M. Ernzerhof, Phys.

Rev. Lett. 77, 3865 (1996), and references therein.
[4] LSDA predicts correctly an insulating antiferromagnetic

state for LaMnO3 if the experimental structural data are
used. However, after structural optimization a metallic fer-
romagnetic state becomes more stable. See, for example,
H. Sawada and K. Terakura, Phys. Rev. B 58, 6831 (1998).

[5] U. von Barth and B. Holm, Phys. Rev. B 55, 10 120 (1997);
B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998).

[6] L. Hedin, Phys. Rev 139, A796 (1965); L. Hedin and
S. Lundqvist, Solid State Physics, edited by H. Ehrenreich,
F. Seitz, and D. Turnbull (Academic, New York, 1969),
Vol. 23.

[7] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61,
237 (1998).

[8] C.-O. Almbladh, U. von Barth, and R. van Leeuwen, Int. J.
Mod. Phys. B 13, 535 (1999); M. Hindgren, Ph.D. thesis,
Lund University, 1997.

[9] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417
(1960).

[10] W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429
(1965).

[11] P. Nozières, Theory of Interacting Fermi Systems
(Benjamin, New York, 1964).

[12] V. M. Galitskii and A. B. Migdal, Sov. Phys. JETP 7, 96
(1958).

[13] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

[14] D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952);
D. Pines, Elementary Excitations in Solids (Benjamin,
New York, 1961).

[15] A scheme using the coupling constant integration was also
considered recently [M. Fuchs et al., (unpublished)].

[16] O. Gunnarsson and P. Johansson, Int. J. Quantum Chem.
10, 307 (1976).

[17] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976).

[18] U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
[19] B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem.

Phys. 98, 5612 (1993).
[20] See, e.g., M. Casida et al., J. Chem. Phys. 113, 7062

(2000).
[21] A. Schindlmayr, T. J. Pollehn, and R. W. Godby, Phys. Rev.

B 58, 12 684 (1998).
[22] W. D. Schöne and A. G. Eguiluz, Phys. Rev. Lett. 81, 1662

(1998).
166401-4


