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We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with antiferromagnetic in-
teractions in an optical lattice, including a usual polar condensate phase, a condensate of singlet pairs, a
crystal spin nematic phase, and a spin singlet crystal phase. We suggest a possibility of exotic fraction-
alized phases of spinor Bose-Einstein condensates and discuss them in the language of Z, lattice gauge

theory.
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Recent experiments on the condensation of Bose gases
with internal degrees of freedom initiated a considerable
amount of work on understanding the nature of spinor
Bose-Einstein condensates (BEC). In particular Bose con-
densation in alkali atoms, with nuclear spin / = 3/2 that
have three low energy hyperfine states and therefore be-
have as hyperfine spin ' = 1 bosons, has been the sub-
ject of active experimental [1-4] and theoretical research
[5-10]. It was pointed out that the ground state of atoms
with antiferromagnetic interactions in an optical trap is not
a usual condensate of a macroscopic number of atoms in a
single quantum state, but, rather, a complicated many body
state of atoms arranged into a total singlet [7—10]. In this
article we examine the problem of Bose F = 1 atoms with
antiferromagnetic interaction (spin symmetric interactions
are assumed throughout the paper) in optical lattices—
arrays of microscopic potentials created by interfering laser
beams [11-18]. The dynamics of spinless bosonic atoms
in arrays of optical wells may be described by a Bose-
Hubbard model with the possibility of quantum phase tran-
sitions between insulating and superfluid phases induced
by varying the properties of the laser light [19]. This tran-
sition has recently been observed in experiments [20,21].
Here, we propose several new phases that will appear
for F = 1 bosons due to an interplay between spin and
charge degrees of freedom: singlet pair condensate that
only breaks charge symmetry, a spin nematic crystal phase
that only breaks spin symmetry, and a novel “strong cou-
pling pairing (SCP) phase” that breaks both spin and charge
symmetry but is distinct from a simple polar BEC. These
phases may be considered as “fragmented condensates”
[22], and have fractionalized topological excitations: half-
vortices and 7 disclinations. Josephson-type experiments
may be used to distinguish among insulating and various
superfluid phases. We also conjecture the possibility of
fractionalized phases in spinor Bose gases. Fractionaliza-
tion is characterized by a topological order [23—-25] and
may coexist with any broken continuous symmetry [26].

In what follows we consider the case of antiferromag-
netic interaction between the atoms agy > a,, where ar
is an s-wave scattering length in the F' channel. This is
the case, for example, for 2*Na atoms [5]. In a single
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well a faithful representation of the possible spin states
of F = 1 atoms is given by the spherical wave functions
Y;»(n), where n is a unit vector (we assume that all the
atoms are in the same orbital state, which is the ground
state for the confining potential). The total (collective)
spin of the atoms and its z projection correspond to L
and m, respectively. The symmetry of the bosonic wave
function is enforced by the constraint L + N = even, and
condition L = N gives the correct Hilbert space. Hence,
we can write the spin state of the bosons as a wave func-
tion on a unit sphere [10] |¢)y = [, ¥(n) |N,n), pro-
vided that the angular momemtum L = —in X % for
the wave function ¢ (n) satisfies the constraints discussed
above. When the number of particles N is large one can
give a simple interpretation of the wave functions |N,n)
as %(nxa;f + nya;f + nzag)N|0> [9]. Here a! are boson
creation operators in the representation where they trans-
form as vectors under spin rotations, |0) is the vacuum
state, and N is a normalization factor.

The Hamiltonian of an array of identical optical wells
with spin symmetric tunneling is given by [10]

H =D 3+ > 3y,
i ij

Ho= LN - un, + S22, (1)
2 2
H, = —Ztninj(bj-bj + bl;'l-bi),

where we defined the charge creation and annihilation op-
erators that change the number of particles N;, but not the
direction of n;: b,-TIN,-,n,) = (N; + D'2|N; + 1,n;),
the number of particles in each well N; = b; b;, and
the angular momentum operators L; = —in; X - that
describe a collective spin in well i [7,10]. Constraints
N; + L; =even and L; = N; are implied for all i,
and for simplicity in Eq. (1) we chose to work in the
grand canonical ensemble using a chemical potential
m. For a single well Hamiltonian (1) correctly gives
a spin singlet ground state if the number of particles
is even [7—10]. When optical lattices are produced by
lasers with wavelength A, they create an optical potential
V(x) = Vo>, sin?(kx;). We can estimate the parameters
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of the Hamiltonian (1) as g = 23LER (ao)L;aZ)f,
U= pg @295t = 2 EpfPe™, where Eg =
h?k?/2M is the recoil energy and ( = (2—2)1/4. The
obvious parameters to tune in experiments are the number
of particles per well (e.g., by varying boson density) and
the strength of periodic potential Vj (by tuning the laser
intensity). When the latter is varied it affects tunneling
exponentially and the interaction coefficients only as a
power law. In what follows, we therefore take U and g as
constant and consider a phase diagram in the coordinates
t and w.

There are two limits when construction of the phase dia-
gram of Eq. (1) is simple. When g = O there is no ener-
getic penalty for having high angular momentum (nonzero
spin) states of quantum rotors in Eq. (1) and spin symmetry
is broken. For integer filling factors we have spin nematic
insulator (NI) phases for small ¢ and a superfluid polar con-
densate (PC) phase for larger values of ¢. For fractional
filling factors the system is always superfluid. The other
simple case is when g is large, and states with odd number
of atoms in individual wells are energetically costly: they
are not allowed to have an L = 0 state of a rotor due to
parity constraint and they have a higher rotational energy.
It is energetically favorable to have even numbers of atoms
in each well arranged into singlet combinations, which can
be interpreted as binding of atoms into singlet pairs with a
pair binding energy g. In the limit when g > U the crys-
tal phases are possible for even numbers of atoms per well
only and correspond to spin singlet insulators (SSI). The
superfluid phase is a condensate of singlet pairs, in which
tunneling of individual atoms between the wells is sup-
pressed and only singlet pairs are delocalized. The origin
of pairing in this case is a singlet formation on the scale
of individual wells. This is reminiscent of the “attraction
from repulsion” mechanism of electron pairing proposed
by Chakravarty and Kivelson for high T, cuprates, Cgo,
and polyacenes [27]. In the case of 0 < g < U we expect
Mott crystal phases for all integer filling factors. For even
N’s and small ¢ the rotors’ kinetic energy dominates and
we have singlet insulator phases (SSI). When ¢ is increased
the system goes to a spin NI phase that has an admixture
of L # 0 in the ground state. For odd N’s when all charge
fluctuations are frozen there is always at least L = 1 on
each site, so we expect the system to be analogous to the
spin-1 lattice model with a broken spin symmetry. The
superfluid phase is a PC for large ¢ but may be a spin sin-
glet fluid of pairs for small ¢. There may also exist other
phases that break translational symmetry, but they will be
discussed in future publications [28].

The scale for the energy difference (per well) between
various phases discussed above is set by g. By taking pa-
rameters similar to the ones used in the experiments of
Greiner et al. [21] we estimate g to be of the order of
tens of hertz. Hence, we expect that the phases proposed
above may be observed with the current experimental tech-
niques. Josephson-type oscillations of the current may be
used to distinguish the two superfluid phases. We imag-
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ine spinor atoms in an optical lattice in the presence of
gravity. Gravity acts as voltage in conventional Joseph-
son junction arrays and gives rise to oscillations in the
current [20]. Josephson oscillations may be measured
selectively in spin or may measure all the particles re-
gardless of their spin. In the case of a single atom con-
densate (PC) we expect oscillations for both kinds of
measurements with frequent iw; = mgA/2. A singlet
pair condensate will only give oscillations in the second
channel with frequency 2/iw; = mgA. Insulating phases
will not show any Josephson oscillations, and nematic vs
spin singlet may be distinguished further through different
correlations for particles of different spin.

Order parameters for the various phases suggested
above and shown in Fig. 1 may be conveniently discussed
using a Euclidean space-time action. We implement the
constraint N; + L; = even using a projection operator
P, = %Zm:il eim/2 (=) NitLi) [26]. For simplicity
we assume that the average number of particles per well is
large, and constraint L; = N; may be neglected (the quali-
tative picture derived from its analysis should, however,
apply even when this number is of the order of 1).
To calculate the partition function Z = Tr[e BH P] we
divide imaginary time 8 into M slices of length e = 8/M
and, after a few standard manipulations that include the
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FIG. 1. Phase diagram of the Hamiltonian (1). (a) This corre-
sponds to g = 0, (b) corresponds to g > U, and (c) corresponds
to the case 0 < g < U. PC is the polar condensate phase, NI
is the nematic insulator, SSC is the spin singlet condensate, and
SSI is the spin singlet insulator. The topology of the phase dia-
gram has not been studied in detail. For example, it is possible
that in (c) there is a direct phase transition between phases PC
and SSL
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Hubbard-Stratanovich transformation of the last term in
Eq. (1), we find

S = - Z Joi O COSPrp — Z J% cos(2¢,,1)
rr! rr!
- ZJ;rro'rr/nrnr/ - ZJE;/Q;?}) Qf/b. (2)
rr! rr!

Here the summation goes over sites r = (i,7) in the
space-time lattice, ¢, is the phase variable conjugate to N,
b = b — b, Q% = n%n? — 59 /3 is a nematic or-
der parameter, and o,,» = *1 is an Ising field that lives on
the links rather than the sites. The coupling constants are
Tiper = (ew)™, T0,es = (e9)7), T epss = €Jlxl,
JFws = e =0, J;?iiy{xyz} = —eJ/4, with x being
the saddle point value of the Hubbard-Stratanovich field.
The usual periodic boundary conditions for ¢, n, and
o are assumed at 7 = 0 and 7 = (. In writing Eq. (2)
we omitted the Berry phase terms that are important for
quantitative calculations of the phase diagram but not for
the symmetry arguments discussed below.

Equation (2) has a Z, gauge symmetry ¢, — ¢, +
%(1 - Gr), n, — €N;, Orr+a — €0 r+a€r+as where
€, = *£1. Such a symmetry was pointed out earlier in
[10,29], where it was observed that the physical order
parameter is a complex vector d = e'¥n (not ¢ and n
separately) that has a symmetry of ¢/ — —e’® n — —n.
Equation (2) is the simplest action consistent with the
charge U(1), spin SO(3), and gauge Z, symmetries of the
model. Another term allowed by the Z, symmetry is the
analog of the Maxwell terms for the lattice gauge mod-
els S, = —K > o[ ]n oy, where the summation goes over
plaquettesina (d + 1)-dimensional lattice. This term may
be generated by integrating out the high energy degrees of
freedom.

The existence of the local symmetry imposes important
constraints on the possible order parameters and symmetry
breaking states of the system. Only order parameters that
are gauge invariant may acquire expectation values. For
example, the expectation values (n) # 0 or (¢’?) # 0 are
not allowed in the models described by Eq. (2), since n;
and e'® are not invariant under Z, gauge transformations.
Physically this restriction arises from the fact that the wave
function W(n) should be an even or odd function of n for
N even or odd, respectively. Below we consider several ex-
amples of the order parameters that are gauge invariant and
review the broken symmetry phases that they lead to (see
Fig. 1). Polar BEC phase (PC) has (d) = {¢’n) # 0. It
breaks both charge and spin symmetries and is the phase
where atoms are condensed directly. The nematic insulator
phase has (Q.») = (ngnp — 8ap/3) # 0 and breaks only
the spin SO(3) symmetry. Spin singlet condensate (SSC)
(e??) # 0 breaks the U(1) symmetry but not SO(3). It
corresponds to a condensate of singlet pairs of atoms. An-
other possible phase is a SCP in phase in which both
(e??) # 0and (Qup) # 0but (d) = 0. This phase breaks
both U(1) and SO(3) symmetries, however, it is fundamen-
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tally different from the polar condensate phase [30,31]. Fi-
nally, SSI is a phase where no field has an expectation
value, so neither U(1) nor SO(3) symmetries are broken.
We note that for a finite number of traps, when sponta-
neous symmetry breaking is not possible, one can observe
signatures of the transitions by measuring fluctuations in
the number of atoms, atom pairs, and spins [20].

It is interesting to point out that phases NI, SSC, and
SCP correspond to the fragmented BEC discussed by
Nozieres and Saint James. The part emphasized in [22] is
that the fragmented state has no macroscopic population
of the k = 0 state for the bosons. Another interesting
aspect of these states is that they achieve fractionalization
of topological objects. The unfragmented PC phase
has topological excitations that are composites of a 1/2
vortex in the charge sector and 7 disclination in the spin
sector. Here the 1/2 charge vortex is a topological defect
around which the phase ¢ winds by 7, and e'¢ changes
sign. 7 disclination in the spin sector is introduced as a
topological defect around which n changes sign (vortex
like objects in n are called merons, so 7 disclination is
one-half of a meron). Both 1/2 vortex and 7 disclination
are pointlike objects in two dimensions and lines in three
dimensions. No individual 1/2 charge vortices or
disclinations are allowed in the PC phase. The spin and
charge parts of the vortex are always glued together.
A condensate of singlet pairs only, the SSC phase, has
1/2 charge vortices as separate excitations, but no spin
vortices; the nematic phase NI has = disclinations and
no charge vortices. A strong coupling pairing phase will
have 1/2 charge vortices and 7 disclinations as separate
excitations.

Establishing the nature of the broken symmetry does not
fully characterize models with gauge symmetry. Another
important aspect of the system described by Eq. (2) is the
possibility of confining and deconfining phases of the Z,
gauge theory in dimension d + 1 = 3. The difference
between the confining and deconfining phases relies on
the concept of topological order [23—26] and has impor-
tant implications on the nature of excitations in the sys-
tem. Topological order may coexist with any true long
range order, so any of the phases reviewed earlier may
be confining or deconfining. For the pure Z, gauge mod-
els the confining and deconfining phases may be distin-
guished using Wilson loops, which are characterized by
an area law for the confining phase and by a perimeter
law for the deconfining phase. With matter field present,
Wilson loops may no longer be used to discriminate be-
tween the two phases [23]; however, distinction between
them survives, and there is a phase transition between
the two. A simple way to understand the transition is to
think of it as condensation of visons, topological excita-
tions of the Z, gauge theory that describe frustrated pla-
quettes [ [ o, = —1. Particles that carry a Z, charge
are frustrated when traveling around a vison, so when vi-
sons are condensed such particles may not propagate co-
herently and we have a confining phase. When visons are
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not condensed, they are finite energy topological excita-
tions and we have a deconfined phase. The presence of
finite energy visons leads to an additional degeneracy of
the gauge models in a deconfined state on manifolds with
non-trivial degeneracy. Systems with Z, gauge symme-
tries in condensed matter have already been discussed by
Lammert et al. [32] in connection with liquid crystals and
Sachdev and co-workers [24] and Senthil and Fisher [26]
in connection with high temperature superconductors. For
our system the discussion above implies that all the bro-
ken symmetry states, as well as a spin singlet insulating
state, where neither U(1) nor SO(3) symmetries are bro-
ken, come in two varieties: confining and deconfining.
Detailed comparison between confining and deconfining
versions of various phases will be given in [28]. Here we
note only that some of the most striking implications of
deconfinement appear for the SSI phase. The deconfining
SSI* phase allows charge b = ¢'?, and spin n carrying ex-
citations propagate independently, which changes dramat-
ically the spectrum of low energy excitations as discussed
in [33].

To summarize, we reviewed several novel phenomena
that take place for F = 1 Bose gases with antiferromag-
netic interactions. We showed that in optical lattices they
will have several distinct superfluid and Mott insulator
phases depending on the density of atoms, the scattering
lengths, and the strength of the periodic potential. Another
possibility suggested in this paper is a class of fractional-
ized phases of spinor BEC, characterized by the topologi-
cal order that may coexist with any true long range order in
the system. Quantitative analysis of experimental systems
will be given in subsequent publications [28]. Discussion
in this paper may be generalized to systems with higher
hyperfine spins. Ideas discussed in this paper for spinor
condensates are also relevant to several condensed matter
systems, including triplet superconductors [29], multicom-
ponent quantum Hall effects [30], and incommensurate
spin density waves [33].
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