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We analyze the current in a superconducting point contact of arbitrary transmission in the presence
of a microwave radiation. The interplay between the ac Josephson current and the microwave signal
gives rise to Shapiro steps at voltages V � �m�n�h̄vr�2e, where n, m are integer numbers and vr is the
radiation frequency. The subharmonic steps (n fi 1) are a consequence of multiple Andreev reflections
(MAR) and provide a signature of the peculiar ac Josephson effect at high transmission. Moreover, the
dc current exhibits a rich subgap structure due to photon-assisted MARs.
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Introduction.—Our understanding of the electronic
transport through superconducting nanostructures has ex-
perienced a notable development in the last few years [1].
This has partly been due to the appearance of the metallic
atomic-size contacts, which can be produced by means of
a scanning tunneling microscope and break-junction tech-
niques [2–5]. These nanowires have turned out to be ideal
systems to test the modern transport theories in meso-
scopic superconductors. Thus, for instance, Scheer and
co-workers [3] found a quantitative agreement between
the measurements of the current-voltage characteristics of
different atomic contacts and the predictions of the theory
for a single-channel superconducting contact [6,7]. These
experiments not only helped to clarify the structure of the
subgap current in superconducting contacts, but they also
showed that the set of the transmission coefficients in an
atomic-size contact is amenable to measurement. This
possibility has recently allowed a set of experiments that
confirm the theoretical predictions for transport properties
such as supercurrent [4] and noise [5]. From these com-
bined theoretical and experimental efforts a coherent pic-
ture of transport in superconducting point contacts has
emerged with multiple Andreev reflections (MAR) [8] as a
central concept. However, in spite of these recent suc-
cesses, one of the most remarkable predictions of MAR
theory remains to be confirmed, namely, the ac Josephson
effect. The theory says that in a constant voltage biased
superconducting point contact, the time-dependent current
is given by I�t� �

P
n Ineinv0t . This means that the

occurrence of MARs gives rise to the appearance of alter-
nating currents that oscillate not only with the Josephson
frequency v0 � 2eV�h̄, V being the voltage, as in the
case of tunnel junctions, but also with all its harmonics.
The direct observation of these alternating components
is prevented by their high oscillation frequencies, and an
indirect method is required to probe their existence.

In this Letter, we present a theoretical analysis of the
current in a superconducting point contact under a mi-
crowave radiation [9]. We show that the interplay between
the ac Josephson current components and a microwave sig-
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nal leads to the appearance of Shapiro steps at voltages
V � �m�n�h̄vr �2e, where n, m are integer numbers and
vr is the frequency of the radiation. This means that in
addition to the usual steps (n � 1) found in tunnel junc-
tions [10], there also appear subharmonic Shapiro steps
(n fi 1), which constitute an unambiguous signature of
the ac Josephson effect in these contacts. Moreover, we
also find that the dc background current, in which the
Shapiro steps are superimposed, exhibits a rich subgap
structure, which can be understood in terms of photon-
assisted MARs and provides a natural explanation of ex-
perimental findings in the early 1970s [11].

Theoretical model.— Our goal is to calculate the current
in a voltage biased superconducting quantum point contact
(SQPC) [12] in the presence of a monochromatic radiation
of frequency vr . We assume that the external radiation
produces an effective time-dependent voltage V �t� � V 1

Vac sinvrt. Our task is to extend the MAR theory to
the case of such a time-dependent voltage, for which the
so-called Hamiltonian approach [7] is a convenient starting
point. For the voltage range eV � D one can neglect the
energy dependence of the transmission coefficients and all
transport properties can be expressed as a superposition
of independent channel contributions. Thus, the problem
reduces to the analysis of a single channel contact, which
can be described by means of the following tight-binding-
like Hamiltonian [7]:

Ĥ � ĤL 1 ĤR 1
X
s

�yc
y
LscRs 1 y�c

y
RscLs� , (1)

where HL,R are the BCS Hamiltonians for the isolated
electrodes. In the coupling term L and R stand for the
outermost sites of each electrode, and y is a hopping pa-
rameter coupling these sites. This parameter determines
the normal transmission coefficient of this model T , which
adopts the form T � 4�y�W�2��1 1 �y�W �2�2, where
W � 1�prF , with rF being the electrodes density of
states at the Fermi energy [7].

In this model the current evaluated at the interface be-
tween the two electrodes adopts the form
© 2002 The American Physical Society 157001-1
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I�t� �
ie
h̄

X
s

�y	cy
Ls�t�cRs�t�
 2 y�	cy

Rs�t�cLs�t�
� .

(2)

The nonequilibrium expectation values in Eq. (2) can be
expressed in terms of the Keldysh Green functions Ĝ

1,2
i,j ,

which in the 2 3 2 Nambu representation read

Ĝ12
i,j �t, t0� � i

√
	cy

j"�t0�ci"�t�
 	cj#�t0�ci"�t�

	cy

j"�t0�c
y
i#�t�
 	cj#�t0�c

y
i#�t�


!
. (3)

Thus, the current can now be written as

I�t� �
e
h̄

Tr�t̂3�ŷ�t�Ĝ12
RL �t, t� 2 ŷy�t�Ĝ12

LR �t, t��� , (4)

where t̂3 is the corresponding Pauli matrix, Tr denotes the
trace in Nambu space, and ŷ is the hopping that in the
Nambu matrix representation is written as

ŷ�t� �

µ
yeif�t��2 0

0 2y�e2if�t��2

∂
. (5)

Here, f�t� � f0 1 v0t 1 2a cosvr t is the time-
dependent superconducting phase difference. The constant
a � eVac��h̄vr � measures the strength of the coupling to
the electromagnetic field and is proportional to the square
root of the radiation power.

In order to determine the Green functions we follow a
perturbative scheme and treat the coupling term in Hamil-
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tonian (1) as a perturbation. The unperturbed Green
functions, ĝ, correspond to the uncoupled electrodes in
equilibrium. Thus, the retarded and advanced components
adopt the BCS form: ĝr,a�e� � gr,a�e�1̂ 1 fr,a�e�t̂1,
wheregr ,a�e��2�er ,a�D�f�e��2er,a�W

p
D2 2 �er,a�2,

where er,a � e 6 ih, with h � 01. One can express the
current in a more compact way in terms of the T matrix.
The T matrix associated to the time-dependent perturba-
tion of Eq. (5) is defined as T̂r,a � ŷ 1 ŷ ± ĝr,a ± T̂ r,a,
where the ± product is a shorthand for integration over
intermediate time arguments. As shown in Ref. [7], the
current in terms of the T-matrix components reads

I�t� �
e
h̄

Tr�t̂3�T̂ r
LR ± ĝ12

R ± T̂a
RL ± ĝa

L 2 ĝr
L ± T̂r

LR

± ĝ12
R ± T̂ a

RL 1 ĝr
R ± T̂r

RL ± ĝ12
L ± T̂ a

LR

2 T̂ r
RL ± ĝ12

L ± T̂a
LR ± ĝa

R �� . (6)

In order to solve the T-matrix integral equation it is con-
venient to Fourier transform with respect to the temporal ar-
guments, T̂ �t, t0� � �1�2p�

R
de

R
de0 e2ieteie 0t 0T̂ �e, e0�.

Because of time dependence of the coupling element [see
Eq. (5)], one can show that T̂ �e, e0� admits the following
solution: T̂ �e, e0� �

P
n,m T̂ �e, e 1 neV 1 mh̄vr�d�e 2

e0 1 neV 1 mh̄vr �. Thus, one can finally write down the
current as I�t� �

P
n,m Im

n exp�i�nf0 1 nv0t 1 mvr t��,
where the current amplitudes Im

n can be expressed in
terms of the T -matrix Fourier components, T̂kl

nm � T̂ �e 1

neV 1 kh̄vr , e 1 meV 1 lh̄vr�, in the following way:
Im
n �

e
h

Z
de

X
i,k

Tr�t̂3�T̂
r

0k
LR,0iĝ

12
k

R,i T̂
a

km
RL,inĝ

a
m
L,n 2 ĝ

r
0
L,0T̂

r
0k

LR,0i ĝ
12
k

R,i T̂
a

km
RL,in

1 ĝ
r
0
R,0T̂

r
0k

RL,0i ĝ
12

k
L,i T̂

a
km

LR,in 2 T̂
r
0k

RL,0i ĝ
12

k
L,i T̂

a
km

LR,inĝ
a
m
R,n�� . (7)

At this point, the calculation of the current has been reduced to determination of the Fourier components of the T
matrix. In the case of a symmetric contact considered here, one can show that the dc current can be expressed only in

terms of T̂ k
i � T̂

a
k0

LR,i0, which fulfill the following set of linear algebraic equations:

T̂k
i � ŷk

i 1
X

l

�Ê kl
i,iT̂

l
i 1 V̂ kl

i,i12T̂
l
i12 1 V̂ kl

i,i22T̂
l
i22� , (8)

where the different matrix coefficients adopt the following form in terms of the unperturbed Green functions:

ŷk
i �

y

2
Jk�a0� �ik�1̂ 1 t̂3�di,21 2 �2i�k�1̂ 2 t̂3�di,1� ,

Ê kl
i,i � y2ik1l

X
j

�21�jJk2j�a�Jj2l�a�

√
g

j
i11gl

i g
j
i11fl

i

g
j
i21f

l
i g

j
i21gl

i

!
,

V̂ kl
i,i12 � 2y2ik2l

X
j

Jk2j�a�Jj2l�a�fj
i11

√
fl

i12 gl
i12

0 0

!
,

V̂ kl
i,i22 � 2y2il2k

X
j

Jk2j�a�Jj2l�a�fj
i21

√
0 0

gl
i22 fl

i22

!
,

where we have used the shorthand notation ĝk
i � ĝa�e 1

ieV 1 kh̄vr � and Jn�a� is the Bessel function of order
n. In some limits one can find an analytical solution of
these systems, but in general a numerical calculation is
needed.
Results and discussions.—Let us concentrate on the dc
current, Idc. This current is the sum of two contributions:
Idc � IB 1 IShapiro, where IB � I0

0 is a background cur-
rent and IShapiro �

P
n,m Im

n einf0d�V 2 Vm
n � is the Shapiro
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steps contribution at discrete voltages V m
n � �m�n�h̄vr�

2e. Notice that several ac current amplitudes can give a
dc contribution at the same voltage. Notice also that the
Shapiro step contribution depends on the average value of
the phase, f0. We concentrate on the height of the Shapiro
steps, which is denoted as Sm

n . Let us remark that in the
tunneling regime we recover the well-known results for
both the background current and Shapiro step heights [13].

In order to illustrate the general results, in Fig. 1 we show
the dc current, background current plus Shapiro steps, for
different values of a and a frequency vr � 0.5D. We can
see the two main features that are the subject of the rest
of the Letter: (i) the subharmonic Shapiro steps Sm

n , with
n fi 1, are clearly visible at high transmissions and (ii) the
background current exhibits a subharmonic gap structure at
voltages eV � �2D 1 kh̄vr ��n, with n, k integers, which
is specially pronounced at low transmissions [14].

Let us start by analyzing the background current. In
Figs. 2(c) and 2(d) we show the background current for
two different frequencies at a moderate power, a � 1.0.
The current in the absence of radiation is also shown for
comparison. As mentioned above, the most prominent
feature in the background current is the appearance of
a pronounced subgap structure at voltages eV � �2D 1
kh̄vr��n. This structure is specially clear at low transmis-
sions [see Fig. 2(d)] and progressively disappears as the
transparency is increased. Indeed, this peculiar subhar-
monic gap structure was already observed in several ex-
periments in the early 1970s in point contacts and thin-film
microbridges [11]. At that time no consistent explanation
was given, but it is clear that this structure can be explained
in terms of photon-assisted MARs. A step at eV � �2D 1

k"vr��n is simply due to the opening of a MAR of order
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FIG. 1. Zero temperature dc current, Idc, as a function of volt-
age for a frequency vr � 0.5D and several values of a. The
different curves in each panel correspond to different transmis-
sions, as indicated in panel (a). In panels (b) and (c) the curves
have been vertically displaced. Panel (d) shows in detail the
curve T � 0.95 of panel (c). The current is normalized by the
normal conductance GN � �2e2�h�T .
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n in which k photons in total are absorbed (k negative) or
emitted (k positive). This is illustrated in the upper pan-
els of Fig. 2. In order to understand how this subharmonic
structure evolves with the rf power, one can do a systematic
perturbative expansion in the transmission. This analysis
tells us that at low transparency the height of a current
jump at eV � �2D 1 k"vr��n is proportional to J2

k �na�,
which is valid as long as h̄vr ø 2D�n. This result coin-
cides with the phenomenological functional form that was
used to fit the experiments by Soerensen et al. [11].

Let us now discuss the Shapiro steps. In this case the
most important aspect is the existence of subharmonic
steps absent in tunnel junctions. These steps arise from the
phase locking between the harmonics of the Josephson fre-
quency and the harmonics of the ac radiation. Early experi-
ments on the ac Josephson effect in weak links observed
subharmonic steps in the I-V curves [15]. More recently,
there have been reported observations of noninteger Sha-
piro steps in high-TC contacts [16], S-semiconductor-S
junctions [17], and diffusive S-N-S systems [18]. Al-
though the Shapiro steps can be understood as a simple
consequence of a nonsinusoidal current-phase relation,
the present approach goes beyond a simple “adiabatic”
approximation and provides the first microscopic theory
of Shapiro steps in contacts of arbitrary transmission.
The adiabatic approximation, which introduces the time
dependence into the zero bias supercurrent through the
Josephson relation, gives rise to the well-known Bessel-
function-like behavior of the steps and gives a good de-
scription of the tunnel regime [13]. However, as we show
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FIG. 2. (a) Representation of a MAR of order 3 in which
k photons are absorbed. This process has a threshold voltage
eVth � �2D 2 h̄jkjvr ��3, and its probability amplitude is pro-
portional to Jk�a�. (b) A 3-order MAR mediated by the emis-
sion of k photons, which contributes to the subgap structure at
eVth � �2D 1 h̄jkjvr ��3. (c) Background current as a function
of voltage for vr � 0.5D and different transmissions. (d) The
same as in (c) for vr � 0.1D. The inset shows a blowup around
eV � D. The dotted lines in (c) and (d) correspond to the cur-
rent in the absence of radiation.
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FIG. 3. Shapiro steps S1
n versus transmission for a � 0.25.

below, such a simple approach fails in the description of a
highly transmissive contact.

As a rule of thumb, a Shapiro step Sm
n is visible when

the corresponding ac Josephson component, In, in the ab-
sence of radiation gives a significant contribution. In par-
ticular, this means high transmissions (see Figs. 3 and 4
in Ref. [7]). One can show that the leading order in trans-
mission of a Shapiro step Sm

n goes like �T n, which is a
consequence of the fact that In � T n, and is the reason
for the absence of the n fi 1 steps in poorly transmissive
contacts. However, near perfect transmission of the sub-
harmonic steps can be even higher than the integer ones.
This behavior is illustrated in Fig. 3, where we show the
Shapiro steps S1

n as a function of the transmission for two
different frequencies.

Figure 4 shows the power dependence of the Shapiro
steps for a frequency vr � 0.5D. Notice that this de-
pendence is rather complicated for both integer and sub-
harmonic steps and clearly deviates from the usual Bessel
function behavior. This is due to the frequency dependence
of the Josephson components, which is specially pro-
nounced at high transmissions. Neglecting this depen-
dence, i.e., within an adiabatic approximation, one would
get that Sm

n evolves as jJm�2na�j. However, as shown
in Fig. 4(b), as the transmission increases the validity of
this approximation is restricted to a ø 1. Notice also
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FIG. 4. (a)– (c) Shapiro steps S1
n (n � 1, 2, 3) as a function of

a for vr � 0.5D. The dotted lines in panel (b) correspond to
the adiabatic approximation: �jJ1�4a�j.
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the complex oscillation pattern at high transmissions (see
T � 0.8 curves in Fig. 4), which is due to the fact that
several ac components give a significant contribution to
the same Shapiro step.

In summary, we have presented a theoretical analysis of
the dc current in a superconducting point contact in the
presence of a microwave radiation. We have shown that
the microscopic theory of coherent multiple Andreev re-
flections provides a unified description of Shapiro steps
and assisted tunneling, explaining in a natural way the ob-
servations of subharmonic steps [15–18] and the peculiar
subharmonic gap structure under a microwave radiation
[11]. Let us finally remark that the results presented in
this work are amenable to a quantitative experimental test
using atomic-size contacts [2–5].
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