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We perform ab initio pseudopotential calculations for metal crystals with finite facets of different
crystallographic orientation to investigate the work function profile near crystal edges. We examine local
edge effects, and address the problem of the coexistence of different face-dependent local work functions
at crystal edges. By modeling the electronic dipoles at the metal surface, we show how nonvanishing
surface charges spontaneously appear on metals with inequivalent facets. Our studies of Al crystal
nanowires with (100) and (111) facets are extended to derive the dependence of the work function on
the crystal morphology in the macroscopic limit.

DOI: 10.1103/PhysRevLett.88.156802 PACS numbers: 73.30.+y, 71.15.Dx, 73.20.At, 79.60.Bm
The work functions of elemental metals depend on the
crystallographic orientation of the surface [1]. The result-
ing work-function difference between two surfaces of the
same metal with different orientation can be as high as
1 eV [2]. Since the Fermi energy is uniform within a crys-
tal and the electrostatic potential outside a smooth metal
surface is essentially constant beyond about 1 nm, differ-
ent surface work functions around a single crystal must
correspond to changes in the vacuum potential which are
eminently local. On the other hand, at sufficiently large
distances from a finite crystal, the crystalline anisotropy is
no longer significant, and the electrostatic potential must
be isotropic and constant. This macroscopic limit at infi-
nite distance, however, should still depend, in general, on
both the orientation of the facets and on the global crystal
morphology. Experimentally, local changes in the work
function and the associated electric fields have been ob-
served recently with atomic to nanometer scale resolution
near metal surfaces by scanning-tunneling, electrostatic-
force, and field-emission microscopy [3–7]. Sharp metal-
lic edges can be fabricated, for example, by buildup of
low-index surfaces through atomic surface diffusion in an
electric field [8]. Theoretically, however, the mechanism
which allows for different local work functions to exist si-
multaneously near a crystal edge has not been examined
yet on a microscopic scale. Also, the relation between
the apparent work function at an infinite distance and the
orientation-dependent local work functions close to the
facets has been explored only for a few, very specific ge-
ometries [9,10]. In this Letter, we address both of these
fundamental issues through ab initio calculations for alu-
minum crystals with (100) and (111) facets.

Previous theoretical investigations of the influence of
crystal edges on the local work function have been limited
to studies of the electrostatic potential around a 90± jellium
edge [11]. On the other hand, for selected metal surface
geometries including no edges, i.e., infinite planes, cylin-
ders, and spheres, macroscopic patch-field approaches
have been developed to evaluate the electrostatic potential
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outside surface areas having a different potential than
that of the surrounding surface (patch work functions)
[5,9]. A general rule that has been established for these
systems is that, for any periodic arrangement of the local
work functions, the apparent work function is equal to
the surface-area weighted average of the individual work
functions [9]. We will show here, however, that crystals
including finite faces and edges give rise, in general, to a
different macroscopic limit.

Facet edges are studied in Al crystal nanowires with
(100) and (111) lateral faces. The wires extend to infinity
along the wire axis. We thus simulate infinitely long edges
between smooth facets. The lateral dimension of each
facet is chosen sufficiently large to describe single-surface
properties at its center. The ab initio computations
are performed within the local density approximation
(LDA) to density functional theory, using the Ceperley-
Alder exchange-correlation functional [12]. We use
a Troullier-Martins pseudopotential in the Kleinman-
Bylander form [13]. The valence charge density is
determined by expanding the electronic wave functions
on a plane-wave basis (16-Ry cutoff), using the supercell
technique. The periodic boundary conditions on the su-
percell introduce periodic replicas of the wire, which are
separated by vacuum regions equivalent to five and four Al
layers for the (100) and (111) faces, respectively. For the
Brillouin-zone integrations, we use a set of Monkhorst-
Pack special k-points (8 and 7 for the wires in Figs. 1 and
2, respectively), together with a 0.01-Ry Gaussian level
broadening to position the Fermi energy [14].

The local work function in vacuum, where the electronic
charge vanishes, includes two contributions: (i) the differ-
ence between the local electrostatic potential and the Fermi
energy of the metal, and (ii) the image potential. It is well
known that the LDA incorrectly describes the asymptotic
form of (ii). The LDA exchange-correlation potential falls
off exponentially, whereas the actual nonelectrostatic po-
tential contribution to the local work function should fol-
low the classical image potential beyond a few atomic units
© 2002 The American Physical Society 156802-1
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FIG. 1. Upper panel: Contour plot of the electrostatic compo-
nent WE , in eV, of the local work function near edges between
Al(100) facets, without surface relaxation. Lower panel: Elec-
trostatic potential created by a model distribution of the surface
charge consisting of two uniformly charged parallel plates form-
ing a finite capacitor. In both panels, continuous (dashed) lines
indicate regions above (respectively below) the value at infinity.
The axes are graduated in atomic units.

from the surfaces [15]. The latter contribution, however,
known analytically for metallic edges of arbitrary angles
[16], plays no role in the two main issues we are address-
ing here—coexistence and apparent work function. As
the image potential becomes negligible at sufficient dis-
tances (�100 nm) from a given sample, the apparent work
function is entirely determined by (i). The same is true
for the work-function values of the infinitely extended sur-
faces. Furthermore, as the image potential exhibits a com-
pletely monotonic behavior around facet edges [17], any
local variation in the work function around edges should
also derive from the electrostatic contribution. In what
follows, we will therefore focus on the electrostatic com-
ponent, WE , of the local work function.

To evaluate WE precisely, we use a two-dimensional
(2D) macroscopic averaging procedure. We average the
self-consistent electrostatic potential y�x, y, z� along the
wire axis z. The xy atomic-scale oscillations of the result-
ing potential y�x, y�— and corresponding charge density
r�x, y�— are then properly filtered out by a macroscopic
average [18] over the 2D lattice unit cell of the crystal, to
obtain a macroscopic potential y�x, y�. Relaxation is in-
cluded for the surface layers of atoms only, retaining the
crystalline periodicity in the central part of the wires and
allowing the macroscopic average to be performed. WE
156802-2
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FIG. 2. Panel (A): Contour plot of the electrostatic component
WE , in eV, of the local work function around relaxed edges
between Al(100) and Al(111) facets. The disks indicate the
atomic columns. The axes are graduated in atomic units. Panel
(B): Model of the local work function outside a larger Al crystal
with apparent (100) and (111) facets of identical length, drawn
at an arbitrary scale. Continuous (dashed) lines in panels (A)
and (B) indicate regions above (respectively below) the value
at infinity. Panel (C): Potential just outside the model crystal
surfaces (WA and WB, dashed lines) and corresponding surface
charge density along the facets (thick solid lines). The apparent
work function is W � WA 1 WB.

is determined by subtracting the Fermi level, EF , from
the macroscopic potential: WE�x, y� � y�x, y� 2 EF . To
obtain from our supercell data the potential at large dis-
tances from an isolated nanowire, a special treatment is
necessary to get rid of overlap terms. Outside a circle sur-
rounding a single wire section, the electrostatic potential
is obtained by modeling the macroscopic charge r�x, y�
with a 2D multipole expansion [19]. The Fermi energy
EF is obtained from a separate bulk calculation to avoid
quantum-size effects [18]. The estimated uncertainty on
the absolute value of WE due to the LDA is of the order
of 0.1 eV. However, as usual within the LDA, and con-
sistent with gradient-correction calculations [20], for the
relative values of the work functions we expect a better
accuracy of the order of the numerical convergence of our
156802-2
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results with the computational parameters reported above,
i.e., 0.03 eV.

Before discussing inequivalent facet edges, we first con-
sider the simpler case of a 90± edge between two equivalent
Al(100) facets. The local work function WE�x, y� around
an Al(100)-Al(010) facet edge is shown in Fig. 1. Outside
the center of each facet, we practically recover the work
function value we find from a separate computation for
the infinitely extended Al (100) surface, i.e., 4.42 eV [18].
Toward the edges, the local work function dips noticeably,
and the contour lines extend further into the vacuum. We
note that the electrostatic potential calculated here ab initio
is strikingly different from that previously obtained for a
90± jellium edge in the Thomas-Fermi approximation [11],
where a nearly monotonic behavior of the potential around
the edge was obtained.

We can understand qualitatively the work-function re-
duction near facet edges by calculating the electrostatic
potential produced by a model distribution of the surface
dipoles. In the lower panel of Fig. 1, we propose a model
charge density consisting of oppositely charged parallel
plates, forming a finite capacitor, arranged on the facets of
the crystal. The uniform charge sheets are separated by a
distance dm � 2.65 Å, on the order of the Thomas-Fermi
screening length, and the charge density on each capacitor
is a fitted quantity, to allow for a fraction of the wire work
function to be taken as a rigid isotropic contribution. The
electrostatic potential created by this model shows a distri-
bution analogous to that calculated ab initio. In particular,
near the edges, the characteristic leaking of the contour
lines into the vacuum, due to the reduced charge density,
is well reproduced [21].

This model of the surface dipoles can be used to scale
up our results, and predict the spatial behavior of the work
function of larger samples. The model demonstrates that
more extended regions at the work function of an infinite
surface will exist outside the facets of larger crystals; the
modifications of the work function near edges, instead,
will remain essentially unchanged [22]. We believe that
analogous reductions in potential should occur near crystal
corners, where three crystal facets meet. The influence
of edges (and all the more of corners) in determining the
apparent work function is reduced thus with increasing
crystal dimensions. If all the facets present on the crys-
tal surface are equivalent, the apparent work function of
a large enough sample is then independent of its global
morphology.

We now turn to the more complex case of inequivalent
facets. The work function near acute and obtuse edges
between two Al(100) and Al(111) facets is shown in
Fig. 2 (panel A), where we observe an anisotropy of the
electrostatic potential in the vacuum. The local work
function outside each facet reproduces well the work
function value we find from separate calculations for the
infinite surface, i.e., 4.42 and 4.23 eV for the (100) and
(111) surfaces, respectively [18] (which, in turn, agree
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well with experiment and previous calculations [23]). We
note that a macroscopically flat potential, characteristic
of a bulk metallic behavior, is obtained within a sizable
section of the wire. The spatial behavior of the potential
in vacuum is qualitatively different from that observed for
equivalent facet edges. The potential rises continuously
perpendicularly to the low-work-function Al(111) facets,
while it goes through a maximum perpendicularly to
the high-work-function Al(100) facets. At infinity, the
apparent work function is intermediate between the two
face-dependent work functions. Local edge effects clearly
do not play a major role in determining the general be-
havior of the work function here. The potential gradients,
i.e., the macroscopic electric fields, that develop around
edges, from the (100) to the (111) facet, indicate that this
behavior is dominated by a different mechanism, namely,
charge transfer between facets.

This charge transfer can be understood by modeling the
ab initio dipole density in the 2D section of our nanowires.
As edge effects play a relatively minor role, we neglect
them in the model, and take the limit dm ! 0. This will
allow us also to predict the local work function around
large (macroscopic) samples, where dm is much smaller
than the typical facet dimensions. We thus impose two
face-dependent uniform distributions of point dipoles on
the crystal facets. If the dipole distributions (or, equiva-
lently, the work function) differ from one facet to another,
the surface dipoles create inside the metal a variation of
electrostatic potential. Surface charges have thus to de-
velop on the crystal facets to allow a macroscopically con-
stant potential in the metal to coexist with face-dependent
surface dipoles. We include thus a second ingredient in
the model, i.e., a surface charge distribution. We deter-
mine this distribution by requiring that the electrostatic
potential is constant inside the metal and that the crystal
remains globally neutral. The charge distribution is ob-
tained numerically using a technique similar to the charge
simulation method [24]. The potential and surface charge
predicted by the model are displayed in Fig. 2 (panels B
and C, respectively) for a macroscopic Al wire with (100)
and (111) facets.

This model reproduces well the general behavior of the
local work function obtained from the ab initio calcula-
tions. The surface dipoles and surface charges combine to
create a macroscopically flat potential in the bulk of the
metal, as is physically required, and the observed variation
of electrostatic potential outside the crystal. The surface
charge density is negative (positive) on the high (respec-
tively low) work-function surface, and has a highly inho-
mogeneous behavior on the facet. While small at the center
of each facet, the magnitude of the charge distribution in-
creases strongly near the edges (and here tends to infinity
at the edge as a result of the assumption that the surface
dipole is infinitely thin [5]).

With this model, we can also examine in general the de-
pendence of the apparent work function W of the wire on
156802-3
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FIG. 3. Reduced apparent work function w of an infinitely
long wire, with facets of lateral dimensions A and B separated
by an angle a (see inset), and of work functions WA and WB,
respectively, as a function of the aspect ratio m � A�B, for
a � 90± (thick solid line) and a � 10± (thick dashed line). The
thin dashed line gives the reduced work function according to
the surface-weighted average rule.

its facet dimensions A and B, angle a, and surface work
functions WA and WB (see inset of Fig. 3). We note that by
linearity it is possible to define a reduced apparent work
function w such that W � WB 1 �WA 2 WB�w, where w
is independent of WA and WB. Furthermore, from scaling
properties of the 2D Poisson equation, one can show that
w depends only on the crystal geometry, i.e., on the aspect
ratio m � A�B and the angle a [25]. In Fig. 3, we dis-
play the calculated reduced work function w of wires with
a rectangular (a � 90±) or highly slanted parallelogram
section (a � 10±), as a function of their aspect ratio. Our
results show that W is very weakly sensitive on the angle
a; i.e., we predict a near-universal dependence of the ap-
parent work function on a single parameter, namely, the
aspect ratio m of the crystal. This dependence, however,
differs significantly from the result of the commonly used
surface-weighted average rule, which we expect thus to
apply only in the limit of a high density of inequivalent
facets.
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