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We define the degree of nonclassicality of a one-mode Gaussian state of the quantum electromagnetic
field in terms of the Bures distance between the state and the set of all classical one-mode Gaussian states.
We find the closest classical Gaussian state and the degree of nonclassicality using a recently established
expression for the Uhlmann fidelity of two single-mode Gaussian states. The decrease of nonclassicality
under thermal mapping is carefully analyzed. Along the same lines, we finally present the evolution
of nonclassicality during linear amplification.
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The quantum nature of light manifests itself in spe-
cial states of the quantum electromagnetic field, such as
squeezed, antibunched, and sub-Poissonian states. Such
states, whose correlation functions cannot be reproduced
by any classical field, are called nonclassical. It is well
known that, in addition to having been predicted by the-
ory, nonclassical states have also been prepared in the
laboratory.

By contrast, as pointed out by Glauber [1], there are
states of the quantum radiation field for which all the nor-
mally ordered quantities have classical distributions. These
states, which are now termed classical, have been charac-
terized by Titulaer and Glauber [2] as possessing a well-
behaved P representation of the density operator. We recall
that a well-behaved P representation is either a non-
negative regular function or a distribution no more sin-
gular than Dirac’s d. Cahill [3] and later on Hillery [4]
proved that the only pure states that are classical are the
coherent ones: all other classical states are mixtures.

It was first shown by Hillery [5] that a distance between
a state and the set of all classical ones could serve as a mea-
sure for how much the distributions of observable quan-
tities in the given state differ from classical distributions.
Hillery employed the trace metric for one-mode states [5,6]
and gave upper and lower bounds of this nonclassical dis-
tance. Recall that the Hilbert-Schmidt metric, quite ex-
tensively used in quantum optics [7,8], has recently been
applied to the same purpose by Dodonov et al. [9]. How-
ever, these authors have chosen as reference sets of classi-
cal states the set of all coherent ones in the pure-state case
and the set of all displaced thermal ones in the mixed-state
case. We also refer to an important paper by Lee [10] who
defines a nonclassical depth tm of any one-mode quantum
state as follows: it is the minimum average number of pho-
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tons added when a thermal field is superposed under the
constraint that the resulting state be a classical one.

In this Letter, we adopt Hillery’s distance-definition of
nonclassicality. Nevertheless, we choose to express the
ideal degree of nonclassicality Q of a state r in terms of
its Bures distance [11] to the set C of all classical states as

Q�r� :�
1
2

min
r0[C

D2
B�r, r 0� . (1)

Recall that the Bures distance between two density opera-
tors r and s acting on a Hilbert space HA is related to
the Uhlmann fidelity [12] of the two states:

DB�r, s� � �2 2 2
q
F �r, s� �1�2. (2)

Uhlmann introduced the function F �r, s�, now called fi-
delity [13], as the maximal quantum-mechanical transition
probability between any purifications jCr� and jCs� of the
two states:

F �r, s� � maxj�Cr jCs�j2. (3)

The pure states jCr� and jCs� are elements of an ex-
tended Hilbert space HA ≠ HB such that their reduc-
tions are the given states r � TrB�jCr� �Cr j� and s �
TrB�jCs � �Cs j�. Uhlmann succeeded in obtaining the ex-
plicit expression of the fidelity,

F �r, s� � �Tr��
p

r s
p

r �1�2�	2. (4)

If at least one of the states is pure, Eq. (4) reduces to the
usual transition probability F �r, s� � Tr�rs�, which is
operationally testable. Our option for the Bures distance
is highly motivated by the description of the measuring
process in quantum mechanics. Indeed, the Bures distance
DB�r, s� provides the best probabilistic distinguishability
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of the quantum states r and s [14–16]: this means that the
fidelity F �r, s� equals the squared minimal overlap of the
probability distributions pr�b� � Tr�rEb� and ps�b� �
Tr�sEb� for the outcomes of any positive operator-valued
measure (POVM) �Eb	,

F �r, s� �

∑
min
�Eb	

X
b

q
pr�b�

q
ps�b�

∏2

. (5)

We deal with one-mode Gaussian states of the radiation
field which are important both theoretically and experi-
mentally. A Gaussian state is defined by a characteristic
function (CF) of the form [17]

x�l� � exp

∑
2

µ
A 1

1
2

∂
jlj2 2

1
2

B�l2 2
1
2

B�l��2

1 C�l 2 Cl�

∏
, �A $ 0� , (6)

and can be parametrized as a displaced squeezed thermal
state (DSTS):

r � D�a�S�r, w�rT Sy�r, w�Dy�a� . (7)

Here D�a� � exp�aay 2 a�a� is a Weyl displacement
operator with the coherent amplitude a, S�r, w� �
exp� 1

2 r�eiw�ay�2 2 e2iwa2�	 is a Stoler squeeze operator
with the squeeze factor r and squeeze angle w, and

rT �
1

n̄ 1 1

X̀
n�0

µ
n̄

n̄ 1 1

∂n

jn� �nj (8)

is the density operator of a thermal state with the mean
occupancy n̄. The DSTS parametrization is explicitly

A 1
1
2

�

µ
n̄ 1

1
2

∂
cosh�2r� ,

B � 2

µ
n̄ 1

1
2

∂
eiw sinh�2r�, C � a .

(9)

Note that the broad class of Gaussian states contains pure
states such as coherent and squeezed coherent ones and
mixed states such as displaced thermal and squeezed ther-
mal ones. Moreover, superposition of a thermal field on
a Gaussian one yields a Gaussian mixed state of the field.
Interest in the nonclassical properties of Gaussian states
was recently renewed by the experimental realization of
153601-2
the teleportation of a one-mode coherent state [18]. For
a possible similar experiment using a nonclassical state it
became important to evaluate the extent to which the non-
classicality can survive imperfect teleportation [19].

The set C0 of all classical Gaussian states is singled out
by the condition that the Glauber-Sudarshan P represen-
tation be a well-behaved quasiprobability distribution. It
was found [17] that for any classical Gaussian state the
squeeze factor does not exceed a nonclassicality threshold
rc:

r # rc :�
1
2

ln�2n̄ 1 1� . (10)

Note that C0 includes the two reference sets of classical
states proposed by Dodonov et al. [9]. In what follows we
shall call classical those unitary transformations in Hilbert
space which map the coherent states into coherent states.
Otherwise stated, a transformation is classical if and only
if it preserves the minimum equal variances of the quadra-
tures in each mode of the field, which are precisely those
in the vacuum. We notice that the only one-mode classical
transformations are the translations D�l� and the rotations
R�u� � exp�2iuaya�.

In order to handle Eq. (1) in the case of a Gaussian
state, either pure or mixed, we find it convenient to modify
slightly Hillery’s definition by restricting the set C to its
subset C0. Consequently, we evaluate the degree of non-
classicality

Q0�r� :�
1
2

min
r0[C0

D2
B�r, r0� (11)

as an upper bound estimate of the ideal quantity (1). How-
ever, to be acceptable as a measure of nonclassicality,
Q0�r� has to satisfy the following three requirements:
(Q1) The degree of nonclassicality vanishes if and only
if the state is classical; (Q2) Classical transformations pre-
serve the degree of nonclassicality; (Q3) Nonclassicality
does not increase under a POVM. In addition, we will
show below that our definition (11) is appropriate in the
sense that it fully agrees with the earlier result of Lee [10].

Our starting point in evaluating the amount of non-
classicality (11) is the explicit formula for the fidelity of
two Gaussian states. It has recently been derived [20] by
Twamley for squeezed thermal states (STS’s), and by Scu-
taru and Paraoanu for DSTS’s. We have used an expression
in terms of the coefficients introduced in Eq. (6) [21]:
F �r, r0� � ��D 1 L�1�2 2 L1�2�21

3 exp

Ω
2

1
D

∑
�A 1 A0 1 1� jC 2 C0j2 1

1
2

�B 1 B0� �C� 2 C0 ��2 1
1
2

�B� 1 B0�� �C 2 C0�2

∏æ
(12)

with

D :� �A 1 A0 1 1�2 2 jB 1 B0j2, (13)

L :� 4

∑µ
A 1

1
2

∂2

2 jBj2 2
1
4

∏ ∑µ
A0 1

1
2

∂2

2 jB0j2 2
1
4

∏
. (14)
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If the DSTS r is classical �r # rc�, then the minimal
value (11) is reached for r0 � r, the unique state for
which fidelity equals unity. Hence,

Q0�r� � 0, �r # rc� , (15)

as required by condition (Q1).
If, on the contrary, r is a nonclassical state �r . rc�,

then maximization of the fidelity under the condition
r 0 # r 0c is achieved for a unique classical Gaussian state
r0 � r̃ having the parameters

ã � a, w̃ � w, r̃ 
 r̃c :�
1
2

ln�2 ˜̄n 1 1� ,

(16)

and

ñ � 2
1
2

1
1
2

�1 1 2 sinh�2rc� exp�2r��1�2. (17)

With these values we get the result

Q0�r� � 1 2 �sech�r 2 rc��1�2, �r . rc� . (18)

Note that the parameters r̃, Eq. (16), and ˜̄n, Eq. (17), as
well as the amount of nonclassicality given by Eqs. (15)
and (18) are independent of the values a and w. This
means that the degree of nonclassicality Q0�r� is preserved
by translations and rotations in phase space. Therefore, it
meets the demand (Q2) of being invariant under all clas-
sical unitary transformations.

It follows from Eqs. (16) and (17) that, for mixed states
�n̄ . 0�, the closest classical state is mixed � ˜̄n . 0� and
its squeeze factor satisfies the inequalities rc , r̃ , r.
For pure states �n̄ � 0�, we get ˜̄n � 0 and r̃ � 0. A
pure one-mode Gaussian state can always be parame-
trized as a displaced squeezed vacuum state (DSVS),
r � D�a�S�r, w� j0� �0jSy�r, w�Dy�a�, which has the
degree of nonclassicality Q0�r� � 1 2 �sechr�1�2. The
closest classical Gaussian state is in this case the coherent
state having the same coherent amplitude r̃ � ja� �aj.

When expressed in terms of the parameters A, B, C,
Eq. (9), the degree of nonclassicality becomes

Q0�r� � 0, �A $ jBj� , (19)

Q0�r� � 1 2 21�4 �A 1 1�2 2 jBj�1�4

�A 1 1 2 jBj�1�2 , �A , jBj� .

(20)

Equations (19) and (20) are the main result of this paper.
They give the degree of nonclassicality of any Gaussian
state (6). We show the importance of these formulas by
studying the behavior of the nonclassicality of the Gaussian
state r under a Gaussian noise mapping [1,22]

Gm̄�r� :�
1

pm̄

Z
d2b exp

µ
2
jbj2

m̄

∂
D�b�rDy�b� ,

�m̄ $ 0� , (21)
153601-3
where m̄ is the mean number of added thermal photons.
Since the thermal map (21) models a nonorthogonal
POVM, we are now in a position to check the requirement
(Q3). The only modification of the CF (6) under the map-
ping (21) is the addition of m̄ to A, A ! A0 :� A 1 m̄.
By applying Eq. (20), it is easy to prove that the degree
of nonclassicality Q0�Gm̄�r�� of the Gaussian state Gm̄�r�
decreases with the thermal noise m̄, in accordance with
condition (Q3). Relatedly, thermalization raises the
nonclassicality threshold:

rc�m̄� �
1
2

ln
2n̄ 1 1
1 2 2m̄

,

µ
m̄ ,

1
2

∂
. (22)

The degree of nonclassicality of the thermalized state (21)
is explicitly

Q0�Gm̄�r�� � 0, �r # rc�m̄�� , (23)

Q0�Gm̄�r�� � 1 2

µ
2y

y2 1 1

∂1�2

, �r . rc�m̄�� .

(24)

In Eq. (24) we have used the notation

y2 :� 1 2 �1 2 2m̄� �1 2 exp�22�r 2 rc�m̄��	� . (25)

A laboratory implementation of the thermalization rule
(21) is the phase-insensitive linear amplification of the field
state [23,24]. We have used the corresponding master
equation [24] to evaluate the time development of the de-
gree of nonclassicality Q0 of amplified DSTS’s. Figure 1
shows that it decreases monotonically with the gain of the
amplifier. As expected [24], the threshold gain Gc for the
emergence of classicality is bounded by 2.

Lee’s already-mentioned nonclassicality depth tm [10]
of a nonclassical DSTS r is determined by the threshold
condition

FIG. 1. Degree of nonclassicality versus gain in the linear am-
plification of DSTS’s with the squeeze factor r � 2. The thresh-
old gain is Gc � 1.82 for n̄ � 2 (plot a), Gc � 1.88 for n̄ � 1
(plot b), Gc � 1.96 for n̄ � 0.05 (plot c).
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rc�tm� � r ,

µ
tm ,

1
2

∂
. (26)

Taking into account Eqs. (10) and (22), insertion of
Eq. (26) into Eq. (18) yields

Q0�r� � 1 2

∑
1 2

µ
tm

1 2 tm

∂2∏1�4

, �r . rc� .

(27)

Accordingly, the amount of nonclassicality Q0�r� is a bi-
jective function of the nonclassical depth tm: it increases
from 0 to 1 when tm increases from 0 to 1/2. We also
write the inverse function

tm �
1
2

∑
12

µ
�1 2 Q0�r��2

1 1 �1 2 �1 2 Q0�r��4	1�2

∂2∏
,

�r . rc� . (28)

Equations (27) and (28) therefore prove that the de-
gree of nonclassicality Q0�r� and the nonclassical depth
tm are equivalent measures of the nonclassicality of a
single-mode Gaussian state. On the one hand, hence we
can draw the conclusion that our definition (11) founded
on the use of the reference set C0 is adequate. On the
other hand, the equivalence displayed by Eq. (27) is not at
all trivial. Indeed, we have found that a quantity similar to
Q0�r�, but built with the Hilbert-Schmidt metric instead of
the Bures metric, is not a function of the only variable tm.
This favors the Bures distance in comparison with other
distances in defining the amount of nonclassicality. How-
ever, one may ask why do we actually prefer Q0�r� to tm

as a measure of nonclassicality, in spite of the more gen-
eral character of the latter? One possible answer is that our
Bures distance-definition of the one-mode nonclassicality
can be extended to study the inseparability of two-mode
states. In fact, inseparability is a stronger form of non-
classicality than that based on the P distribution. We have
effectively applied the ideas sketched in this Letter to de-
fine and evaluate elsewhere an entanglement measure for
an important class of bipartite mixed states of the radiation
field, namely the two-mode STS’s [25].

To sum up, we have succeeded in quantifying the non-
classicality of any single-mode Gaussian state. Our ap-
proach to solving this significant problem makes use of
the Bures distance between Gaussian states, which has re-
cently been evaluated. The suggestive result obtained in
the DSTS parametrization, Eqs. (15) and (18), is appli-
cable to any Gaussian state via Eqs. (19) and (20).
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