
VOLUME 88, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 15 APRIL 2002

1

Ab Initio Shell Model Calculations with Three-Body Effective Interactions for p-Shell Nuclei
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We present a qualitative improvement of the ab initio no-core shell model (NCSM) approach by
implementing three-body interaction capability for p-shell nuclei. We report the first calculations using
three-body effective interactions derived from realistic nucleon-nucleon potentials for 6Li, 8Be, and 10B
and demonstrate that the use of three-body effective interactions speeds up the convergence of the NCSM
approach. For 10B, we predict Jp T � 110 ground state, contrary to the experimental observation of
310, when the AV80 potential is used, indicating the need for true three-body forces.
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Various methods can be used to solve systems of more
than two nucleons interacting by realistic interactions [1,2].
For A . 4 systems, a prominent approach has been the
Green’s function Monte Carlo (GFMC) method [2]. An
alternative, and complementary, approach is the no-core
shell model (NCSM) [3–8], which is based on effective in-
teractions within the framework of the nuclear shell model.
In this case, one derives an effective interaction for the
A-body system within a computationally tractable model
space that is designed to converge towards the exact re-
sult. One of the most important features of these effective
interactions is that they are composed of two-, three-, up
to A-body components even if the fundamental interaction
is only pairwise. In practical applications, a compromise
between the size of the model space and the number of
clusters in the effective interaction must be made.

Until now, applications of NCSM for A . 4 have been
based on two-body effective interactions. The first used
G-matrix-based two-body interactions [3], while later, the
Suzuki-Lee procedure [9] was implemented to derive two-
body effective interactions for the NCSM [4]. This resulted
in the elimination of the purely phenomenological pa-
rameter D used to define G-matrix starting energy. A truly
ab initio formulation of the formalism was presented in
Ref. [5] where convergence to exact solutions was demon-
strated for the A � 3 system. The same was later accom-
plished for the A � 4 system [6], where it was also shown
that a three-body effective interaction can be introduced to
improve the convergence of the method.

An extension to three-body components in the effective
interaction is important for two reasons. First, formally
the inclusion of a three-body effective interaction within a
given model space should improve the overall convergence
of the method [6]. Although calculations up to Nmax � 10,
with Nmax the maximum many-body harmonic-oscillator
(HO) excitation energy defining the model space, have
been carried out for A # 8 [8], and near convergence has
been achieved for A � 6, for A . 10 it is essentially im-
possible to extend the basis size to such an extent as to
achieve convergence using just two-body effective inter-
actions. Hence, it is crucial to test the alternative ap-
proach where convergence is sought by using higher-order
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terms in the effective interaction. The second reason is
that there is ample evidence from exact solutions of three-
and four-body systems that “true” three-body interactions
are present in nuclei [1,2]. Given that the techniques in
the many-body shell model calculation are the same for
both the effective and “true” three-body interactions it is
only logical to include the effective three-body interaction
in the NCSM. In this Letter, we present the formalism and
the first application of three-body effective interactions to
ab initio studies of the structure of p-shell nuclei.

In the NCSM, we start from the intrinsic A-nucleon
Hamiltonian HA � Trel 1 V , where Trel is the relative
kinetic energy and V is the sum of two-body or pos-
sibly higher-body nuclear and Coulomb interactions. To
facilitate our calculations, we add a center-of-mass HO
Hamiltonian, whose effect will be eventually subtracted
in the final many-body calculation, and for a two-body
interaction obtain the HO frequency-dependent Hamilto-

nian HV
A �

PA
i hi 1

PA
i,j V

V,A
ij . The hi is a one-body

HO term and the two-body interaction V
V,A
ij contains a

term proportional to 1
A � �ri 2 �rj�2 [4–8]. Since we solve

the many-body problem in a finite HO basis space, it
is necessary that we derive a model-space dependent
effective Hamiltonian. For this purpose, we perform a
unitary transformation [4–10] on the Hamiltonian, which
accommodates the short-range correlations. In general, the
transformed Hamiltonian is an A-body operator. The first-
order approximation is to develop a two-particle cluster
effective Hamiltonian, while the next improvement is to
include three-particle clusters, and so on. The effective
interaction is obtained from the decoupling condition
between the model space and the excluded space for the
two- or three-nucleon transformed Hamiltonian. On the
two-body cluster level, we solve h1 1 h2 1 V

V,A
12 , and

from the transformation we obtain V
V,A
22eff,12 and then solve

the A-body problem using
PA

i hi 1
PA

i,j V
V,A
22eff,ij . On

the three-body cluster level, we solve h1 1 h2 1 h3 1

V
V,A
12 1 V

V,A
13 1 V

V,A
23 to obtain V

V,A
32eff,123 and then use

PA
i hi 1

1
A22

PA
i,j,k V

V,A
32eff,ijk for the A-body problem.

The resulting two- or three-body effective Hamiltonian
depends on the nucleon number A, the HO frequency V,
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and Nmax. The effective interaction approaches the bare
interaction for Nmax ! `.

The three-body effective interaction is derived as
described above and in Ref. [6] by solving h1 1 h2 1

h3 1 V
V,A
12 1 V

V,A
13 1 V

V,A
23 in a large Jacobi-coordinate

HO basis in all possible three-nucleon channels that con-
tribute to the model space defined by Nmax. To speed up
convergence of the three-body solutions, we use two-body
effective interactions for V

V,A
ij corresponding to a suf-

ficiently large three-body space, e.g., N3max � 30 40.
From these solutions we then construct the three-body
effective interaction corresponding to Nmax , N3max
using the Suzuki-Lee approach. The resulting three-body
effective interaction is given in an antisymmetrized HO
Jacobi-coordinate basis and can readily be applied in
A . 3 Jacobi-coordinate calculations such as 4He [6,11].

For p-shell nuclei, it turns out that the single-particle
Slater-determinant (SD) HO basis is more efficient to use.
In order to utilize our three-body effective interaction with
the SD HO basis, we need to transform it first. At the
two-body level, this transformation is very well known
and depends on HO Brody-Moshinsky brackets. For our
three-body case, we used m-scheme three-body SD basis
states with definite parity and third component of angu-
lar momentum and isospin. The transformation from the
Jacobi basis is complex and depends on products of two
HO Brody-Moshinsky brackets (one for two particles with
mass ratio 1 and a second for two particles with mass ratio
1�2) and the parentage coefficients obtained by antisym-
metrization of the Jacobi coordinate HO basis. The full
details of the transformation will be described elsewhere.

Once the three-body interaction is transformed, it is
ready for an input to a standard shell model code. Typi-
cally, shell model codes are designed to handle only one-
and two-body interactions. Therefore, we had to extend
or develop new codes capable of including three-body in-
teractions. In particular, we extended the many-fermion
dynamics (MFD) code [13]. In addition, we developed a
completely new parallel code, REDSTICK, specifically for
this purpose, using a different algorithm for evaluating the
Hamiltonian matrix. The m-scheme SD basis is used and
the matrix diagonalization is performed using the Lanc-
zos algorithm in both codes. We cross-checked the results
obtained by both codes and obtained identical results. In
addition, we performed 4h̄V �Nmax � 4� 6Li calculations
within the Jacobi-coordinate formalism [6] and obtained
identical results to the shell model codes, thereby validat-
ing the transformation from Jacobi coordinate basis to the
single-particle SD basis.

Before describing our results for p-shell nuclei, we
illustrate the power of effective interaction theory in
Fig. 1, where we show results obtained for 4He using the
QCD-based, effective-field theory (EFT) [14], Idaho-A
[15] two-nucleon (NN) potential. The figure contrasts
the results obtained with the bare and two-body and
three-body effective interactions. We note that the
three-body correlations in the effective interaction dra-
152502-2
FIG. 1. Calculated ground-state energy of 4He using the EFT
two-body Idaho-A NN potential (no Coulomb). Results ob-
tained with the bare (short-dashed line), two-body effective
(long-dashed line), and three-body effective (full line) inter-
actions in 0h̄V 18h̄V basis spaces with the HO frequency
of h̄V � 36 MeV are presented. Our converged ground-state
energy is 227.34�3� MeV.

matically improve the convergence, and quite reasonable
results are obtained already for Nmax � 4 6. Further,
unlike for the standard NN potentials, it is clear that
for Nmax $ 10, the three-body correlations dominate
the two-body correlations. These EFT potentials are a
new development for NN interactions and are not only
nonlocal, but tend to have softer cores, which leads to
faster overall convergence. In addition, for complex
systems they are also comprised of three-nucleon (NNN)
interactions that are systematically derived along with the
two-body terms. It is an important question for the future
as to how well these potentials describe the properties of
complex nuclei. These interactions are particularly well
suited to the NCSM method provided that the three-body
correlations are included in the computations.

We performed calculations for 6Li, 8Be, and 10B using
the Argonne V80 NN potential [2] including Coulomb. Re-
sults for these nuclei obtained by the GFMC method are
available for a comparison [2,16]. Our calculations for 6Li
were performed up to the 6h̄V, while those for 8Be and
10B only up to the 4h̄V due to increased complexity.
In Fig. 2, we present the frequency dependence of the
6Li, 8Be, and 10B ground state for both two-body and
three-body effective interactions. We can see that the
three-body effective interaction calculation has a weaker
dependence on both the frequency and basis size, and,
thus, has a better convergence rate. We note that the
method is not variational so higher-cluster components
may contribute with either sign to the total binding en-
ergy. We seek a region where the ground state is approxi-
mately independent of the HO frequency. Our calculated
energy results are summarized in Table I where we note
that convergence at the level of approximately 500 keV
is achieved for the ground states of all three nuclei with
the three-body effective interaction. Of the three cases,
152502-2
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FIG. 2. Calculated ground-state energy of 6Li (upper panel), 8Be (middle panel), and 10B (lower panel) using the AV80 NN potential
with Coulomb. Results using the two-body effective interaction and the three-body effective interaction in basis spaces up to 6h̄V
in the range of HO frequencies of h̄V � 8 28 MeV are shown and compared to the GFMC results from Refs. [2,16]. On the
right-hand side, the energies at the HO frequency minima as a function of Nmax are plotted.
perhaps the most notable is 8Be, where the ground-state
energy is substantially improved with the three-body effec-
tive interaction. In particular, the 4h̄V results are within
570 keV of the GFMC calculation, whereas the deviation
with the two-body effective interaction even in the 8h̄V
space is in excess of 1.8 MeV. The agreement between

TABLE I. Calculated energies, in MeV, of 6Li, 8Be and 10B,
using the AV80 NN potential including the Coulomb interaction.
The NCSM results corresponding to the V-dependence mini-
mum for a given Nmax and JpT using V32eff and V22eff are
compared to the GFMC results [2,16].

GFMC NCSM V32eff NCSM V22eff

6Li E�110� 228.19�5� 228.61 �6h̄V� 228.60 �10h̄V�
6Li E�310� 224.98�5� 225.54 �6h̄V� 225.58 �10h̄V�
6Li E�011� 224.15�4� 224.76 �6h̄V� 225.20 �10h̄V�
6Li E�210� 224.12�4� 223.97 �6h̄V� 224.23 �10h̄V�
8Be E�010� 247.89�11� 248.46 �4h̄V� 249.72 �8h̄V�
8Be E�210� 245.62�11� 244.80 �4h̄V� 246.09 �8h̄V�
8Be E�410� 238.69�11� 236.05 �4h̄V� 237.25 �8h̄V�
8Be E�110� 232.77�15� 231.13 �4h̄V� 232.80 �8h̄V�
8Be E�310� 231.23�15� 229.58 �4h̄V� 230.99 �8h̄V�
8Be E�211� 232.7�1� 231.84 �4h̄V� 233.40 �8h̄V�
10B E�110� 255.67�26� 256.19 �4h̄V� 256.32 �6h̄V�
10B E�310� 253.23�26� 254.83 �4h̄V� 254.96 �6h̄V�
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our calculations and the GFMC worsens for the higher-
lying excited states, in particular, for broad states like the
410 8Be. In general, we find that unbound states that are
characterized by broad resonances tend to converge more
slowly in our approach. Further, it is likely that higher-
order clustering effects may be present in 8Be, which might
be improved with a four-body effective interaction.

In Figs. 3 and 4, we present the 8Be and 10B excita-
tion spectra. Here, the 4h̄V three-body effective inter-
action excitation spectra are compared to the results with
two-body effective interaction at 4h̄V and 8h̄V for 8Be
and 6h̄V for 10B. We note the general agreement between
the three-body effective interaction spectrum and that ob-
tained with V22eff in the largest space, in particular, for the
T � 0 states. For 8Be, we also show the position of the
T � 0 intruder states that we investigated in Ref. [8] us-
ing just the two-body effective interaction. It is remarkable
how the use of the three-body effective interaction strongly
influences these states in contrast to the 0h̄V dominated
states. Nevertheless, the space enlargement lowers these
states even more.

We also note that the 10B results yield the 110 state
as the ground state with the AV80 NN potential contrary
to the experimental observation [17] of 310. This is also
observed in our calculations using the charge-dependent
152502-3
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FIG. 3. Experimental and theoretical positive-parity excitation
spectra of 8Be using the AV80 NN potential with Coulomb. The
results for V22eff in 4h̄V and 8h̄V and V32eff in 4h̄V basis
space using h̄V � 14 MeV are compared. The experimental
values are from Ref. [17]

Bonn NN potential [18]. The incorrect ground-state spin
prediction in 10B shows the deficiency of the realistic NN
potentials, in particular, an insufficient spin-orbit force,
and, when combined with results for A � 3 and 4 systems,
clearly indicates the need for a real three-body interaction.
We note that for the Argonne potentials, this result has
recently been confirmed by the GFMC calculations [16].

In the future, we will include the effects of the “true”
three-body interaction. At that point, we will then carry out
systematic investigations for p-shell nuclei ranging to 16O,
which are all computationally accessible with three-body
interactions in the 4h̄V model space. For light p-shell nu-
clei, we will extend calculations to the 6h̄V model space.
Another possibility to help increase the model-space size

FIG. 4. The same as in Fig. 3 for 10B using h̄V � 15 MeV.
The largest space with V22eff was 6h̄V.
152502-4
for heavier p-shell nuclei is to utilize the interesting fea-
ture that the three-body effective interaction appears to
act primarily as a density-dependent two-body interaction.
Preliminary results indicate that only a small error, ap-
proximately 100 keV, is introduced when truncating the
full three-body effective interaction by neglecting the pure
three-body configurations. Still further in the future, we
will explore the possibility to include four-body clusters in
the effective interaction.
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