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Noncommutative Quantum Mechanics from Noncommutative Quantum Field Theory
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We derive noncommutative multiparticle quantum mechanics from noncommutative quantum field
theory in the nonrelativistic limit. Particles of opposite charges are found to have opposite noncommu-
tativity. As a result, there is no noncommutative correction to the hydrogen atom spectrum at the tree
level. We also comment on the obstacles to take noncommutative phenomenology seriously and propose
a way to construct noncommutative SU�5� grand unified theory.
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1. Introduction.—Recently there has been a growing
interest in noncommutative geometry as well as its phe-
nomenological implications. This was motivated by the
discovery in string theory that the low energy effective
theory of D-brane in the background of Neveu-Schwarz –
Neveu-Schwarz (NS-NS) B field lives on noncommutative
space [1–6]. In the brane world scenario [7], our spacetime
may be the world volume of a D-brane and thus may be
noncommutative. In fact, apart from string theory, it has
long been suggested that the spacetime may be noncom-
mutative as a quantum effect of gravity, and it may provide
a natural way to regularize quantum field theories [8,9].

In many proposals to test the hypothetical spacetime
noncommutativity, one does not need the exact quantum
field theory, but only its quantum mechanical approxi-
mation. Although noncommutative quantum mechanics
(NCQM) has been extensively studied, we want to clarify a
point that has not been emphasized before or was even mis-
understood in some of these papers. The main point is that
the noncommutativity uab is not the same for all particles
in NCQM. The noncommutativity of a particle should be
opposite to (differ by a sign from) that of its antiparticle,
and the noncommutativity of a charged particle should be
opposite to any other particle of opposite charge. Our ba-
sic assumption is that NCQM should be viewed as an ap-
proximation of a noncommutative field theory (NCFT) in
which all fields live on the same noncommutative space.
The same viewpoint was taken in [10].

We always assume that the time coordinate t is commu-
tative. Otherwise the formulation of quantum mechanics
may require drastic modification [11].

Naively, to define a physical system on noncommutative
space, we simply take the Lagrangian for ordinary space
and replace all products by star products. For example,
one tends to claim that the noncommutative Schrödinger
equation for a hydrogen atom [12,13] is as follows [There
is an ambiguity in the ordering of the last term. It could
as well be c � V . However, replacing V � c by c � V
is equivalent to replacing u by 2u. Without specifying u,
we can choose either case without loss of generality.]:
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i
≠

≠t
c � 2

=2

2me
c 1 V �x� � c , (1)

where V � 2e2�jxj is the electric potential of the proton,
and the � product is defined by

f�x� � g�x� � e
i

2
uab ≠

≠xa
≠

≠x0b f�x�g�x0�jx 0�x . (2)

Here x should be interpreted as the relative coordinate
between the electron and the proton

xa � xae 2 xap , a � 1, 2, 3 . (3)

This means that the commutation relation for x should be
derived from those for xe and xp. Suppose

�xae , xbe � � iuab
e , �xap , xbp� � iuab

p ,

�xae , xbp� � 0 ,
(4)

then

�xa, xb� � i�uab
e 1 uab

p � . (5)

We show below that we should take ue � 2up and thus
x is actually commutative.

If we assume that the proton has infinite mass and is
localized at the origin as a delta function, we can interpret
x as the coordinate of the electron. Then it would make
sense to say that x is a coordinate on the noncommutative
space. However, it is unnatural to assume an extreme
localization of proton on a noncommutative space.

2. NCQM from NCFT.—Consider the NCFT of some
charged particles and a U�1� gauge field. The action is of
the form

S �
X
a

Sa 1 SA . (6)

Sa is the action for a charged particle. For instance, for
a fermion in the fundamental representation of the gauge
group, it is

Sa �
Z

d4x c̄a � �iD� 1 ma� � ca , (7)

where ma is the mass of the particle a and Dm � ≠m 1

Am. The action for the U�1� gauge field is
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SA �
Z

d4x Fmn � Fmn , (8)

where

Fmn � �Dm,Dn �� . (9)

On a noncommutative space, even the U�1� gauge group
is non-Abelian. Therefore all fields must have the same
charge: particles have charge 11 and antiparticles have
charge 21.

In order to derive NCQM from NCFT, we repeat what
we do for the commutative case. First, we collect those
terms in the action involving Am,Z

d4x �Jm � Am� 1 SA , (10)

where J �
P

a ja, and the current density for the fermion
in (7) is

jm
a � ica � �g0gm�T � cy

a . (11)

Now we can integrate out Am and find the effective interac-
tion between the charged particles. In the weak coupling
limit or weak field limit where we can ignore the self-
interaction of Am, one finds the effective interaction

SI �
Z

d4x d4x0 Jm�x� � Gmn�x, x0��0 � Jn�x0�

�
Z

dt HI , (12)

where G is the photon propagator in a certain gauge, and
�0 means star product with respect to x0.

Decompose each field into positive and negative fre-
quency modes

c �
Z

d3k �bks�t�ukseikix
i

1 d
y
ks�t�ykse

2ikixi � ,

(13)

where b is the annihilation operator for the particle, dy is
the creation operator for its antiparticle, and the particle
index a is suppressed. We ignore the spinor index s as
it does not play any role in our problem. In the operator
formulation, one can define the field operators

ĉ1 �
Z

d3k bk�t�eikix
i

(14)

for the particle a, and

ĉ2 �
Z

d3k dk�t�eikix
i

(15)

for its antiparticle ā. The quantum mechanical wave func-
tion for a two-particle state jj� in the NCFT is

C�ae1� �be2��x1, x2� � �0jĉae1 �x1�ĉbe2�x2� jj� . (16)

Here x1, x2 are viewed as commutative coordinates in the
star product representation. Thus the coordinates for dif-
ferent particles in the wave function C always commute
with one another by definition. Similarly, one can define
151602-2
the wave function for a state of an arbitrary number of
particles and antiparticles.

The Schrödinger equation is a result of the fact that ca

satisfies its equation of motion, which can be written as

i �c�x� � �H, c�x�� (17)

in terms of the Hamiltonian H. For the effective action,
H � H0 2 HI, where H0 is the kinetic term and HI is
given by (12). Thus, for example,

i
≠

≠t
CAB � �� 0j �H, ĉAĉB� jj� , (18)

where A � �ae1� and B � �be2�.
Straightforward derivation shows that, in the nonrela-

tivistic approximation where the interaction is dominated
by the Coulomb potential, the Schrödinger equation is
given by

i
≠

≠t
CAB�x1, x2� �

µ
2

=
2
1

2ma

2
=

2
2

2mb

1 V �x1, x2�
∂

3 �e1e2CAB�x1, x2� , (19)

where �e1e2 is defined by

f�xe, xp� �e1e2
g�xe, xp� � e

i

2
uab�e1

≠

≠xae

≠

≠x0be
1e2

≠

≠xap

≠

≠x0bp
�

3 f�xe, xp�g�x0e, x
0
p�jx�x0 ,

(20)

and V is given by V �x1, x2� � 2
e2

jx12x2j
.

While the above prescription applies to generic interac-
tions, for our special case of a gauge field, the result above
(19) can be easily obtained by demanding gauge symme-
try. For a field in the fundamental representation,

ĉ1 ! U � ĉ1, ĉ2 ! ĉ2 � Uy (21)

under a gauge transformation. This implies that the co-
variant derivative must act on the wave function C from
the left for particles and from the right for antiparticles.
Since the electric potential V is just the time component
of the gauge potential Am, we immediately reach the same
conclusion as in (19).

In the context of string theory, for an open string ending
on a D-brane, the two end points appear as opposite charges
to the D-brane gauge field. In a B field background, the
two end points also observe opposite noncommutativity
[3]. It was first argued in [3] that the NCFT on a single
noncommutative space automatically takes care of this
effect. In this section we provided a rigorous derivation.

3. Separation of Variables.—To solve the Schrödinger
equation for multiparticle wave functions, we use the tech-
nique of separation of variables. For the hydrogen atom,
the Schrödinger equation is

i
≠

≠t
C�xe,xp� �

µ
2

=2
e

2me
2

=2
p

2mp
1 V �xe, xp�

!

3 �21C�xe, xp� , (22)

where we choose the convention that the noncommutativity
151602-2
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parameter u �2u� is associated with positive (negative)
charges.

Since the kinetic term is not modified, we take the ansatz

C�xe, xp� � F�X�c�x� , (23)

where X �
mexe1mpxp
me1mp

is the center of mass (c.m.)
coordinate, and x � xe 2 xp is the relative coordinate.
The noncommutativity for these coordinates is given by

�Xi ,Xj��21 � i
mp2me

mp1me
uij � iuij

pp , (24)

�xi , xj ��21 � 0, �xi ,Xj��21 � iuij � iuij
ep.

(25)

The kinetic term can be rewritten as

=2
e

2me
1

=2
p

2mp
�

=
2
X

2M
1

=2
x

2m
, (26)

where M � me 1 mp is the total mass and m �
memp

me1mp
is the reduced mass.

For the Fourier mode of X,

C�X� � e2iEt1iKiXi

c�x� , (27)

(22) is reduced toµ
E 2

K2

2M

∂
c�x� �

∑
2

=2
x

2m
1 V

µ
x 2

1
2

uepK

∂∏
3 c�x� . (28)

Note that translational invariance implies that V can
depend only on the relative coordinate x. Let c�x� �
c 0�x 2

1
2 uepK�. Since (28) contains no star product, it

is exactly the same equation for classical space in terms
of c 0. Unless we include self-interactions of the gauge
field, the whole spectrum is exactly the same as the
commutative case. The shift in the relative coordinate is
easy to understand from the D-brane picture, where space
noncommutativity results from the background B field.

Therefore, for example, the noncommutative correction
to Lamb shift should be much smaller than the one given
in [12]. There is no correction at tree level. The lowest
order contribution of u comes from the one-loop diagrams
and is negligible.

4. Generalization.—Suppose that there are m particles.
Let the charges of particle a (a � 1, . . . ,m) be qa , where
qa � 1, 0, 21. If qa � 1�21�, it means that the field
operator for particle a, which was denoted as ĉ1 �ĉ2�
before, transforms from the left (right) as in (21).

If we repeat the derivation in the previous sections, the
Schrödinger equation for N particles is

i
≠

≠t
C�x1, . . . , xN � � 2

NX
a�1

=
2
i

2mi
C

1
1
2

X
afib

qaqbV �xa ,xb�

3 �qaqb
C , (29)

where V is the �00� component of the Green’s function for
the gauge field Am.
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The c.m. coordinates Xm of the system satisfies

�Xm,Xn��	qi
 � i

PN
a�1 q

a
i m2

aP
b m2

b

umn. (30)

It is easy to see that the magnitude of the noncommutativity
is never larger than juj.

A composite particle is a system of N particles which
has a bound state with a small spatial extension. The
c.m. coordinates of the system will be taken as the coordi-
nates of the composite particle. If the size of the composite
particle is larger than

p
u, it is meaningless to talk about

its noncommutativity. In the case of a hydrogen atom, the
relative coordinate x is commutative; thus its size can be
arbitrarily small. On the other hand, if some relative co-
ordinates for the constituents of the composite particle are
noncommutative, which is always the case as long as there
are three or more charged constituent particles, the size of
the composite particle must be larger than the order of

p
u,

and hence the noncommutativity of the composite particle
can be neglected for most purposes.

5. Discussion.—On noncommutative (NC) space,
charges are always quantized, even for the U�1� gauge
field. However, in the standard model, there are particles
of electric charges 1�3, 2�3, etc. It implies that the
electromagnetic interaction cannot be a NC U�1� gauge
theory. Similarly, the U�1� gauge group for hypercharges
cannot be noncommutative, either [14]. In the SU�5�
grand unified theory (GUT), on the other hand, all charges
are already quantized. There are fractional hypercharges
only because the U�1� group is embedded in SU�5� with
a generator T � diag�1�3, 1�3, 1�3, 21�2, 21�2�. But
there are other problems for NCGUT. The first problem
is to define NC SU�5� gauge symmetry. In general, it is
straightforward to construct NC U�N � gauge theory, but
difficult to have any other gauge group [15–17].

A possible resolution of this problem [18] is to define
NC SU�N � gauge symmetry as the image of the classical
SU�N� via the Seiberg-Witten (SW) map [6]

Â � Â�A� , (31)

where quantities without (with) hats are commutative (non-
commutative) fields. It is consistent with gauge transfor-
mations to restrict Am to the Lie algebra of SU�N �. The
same idea can be used to define the noncommutative ver-
sion of any classical group [18].

It is also possible to define NC SU�5� theory directly in
terms of the noncommutative variable Â without mention-
ing the commutative A. We can simply take the NC U�N �
gauge field Â and impose the following constraint:

Cmn�k� � TrFmn�Â� �k� � 0 , (32)

where Fmn�Â� is the inverse SW map. (An exact expres-
sion for the inverse SW map was given in [19].) This im-
plies that the U�1� part of Am can be gauged away, and the
result is equivalent to the approach of [18].

It is interesting to note that another constraint with a
much simpler expression
151602-3
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C0
mn�k� � Tr

Z
d4x F̂mn�x� � e

ikm�xm1iumnÂn�
� � 0

(33)

is also gauge invariant and has the same classical limit
TrFmn � 0. At this moment we do not know if these two
constraints are exactly the same.

Recently, a similar idea was proposed independently
in [20], where the constraint was imposed on Â instead.
Another constraint on gauge transformations Û has to be
imposed simultaneously for consistency [20]. It would be
of interest to know if all such constraints are equivalent
under field redefinitions.

Another problem about NCGUT is that there are matter
fields in the antisymmetric representation of SU�5�. Al-
though it is straightforward to define matter fields in the
fundamental and adjoint representations, in general it is
hard to introduce other representations [15,16].

This problem can also be solved by using the SW map.
For any D dimensional representation of SU�5�, we con-
sider the SW map for NC U�D� gauge symmetry. For any
classical gauge transformation U [ U�D�, the SW map
provides a NC U�D� transformation Û�U�. Since SU�5�
can be embedded in U�D� according to its D dimensional
representation, we can define NC SU�5� transformations
for a fundamental representation of U�D� by

f̂a ! Ûab�U�f̂b, a,b � 1, 2, . . . ,D , (34)

where U is a classical SU�5� gauge transformation. Thus
f̂ can be viewed as a D dimensional representation of
NC SU�5�.

For the ten dimensional representation of SU�5�, one
usually defines it as an antisymmetric tensor fij �
2fji (i, j � 1, 2, . . . , 5) which transforms as f !

UfUy. However, the tensor will not be antisymmetric
after a generic NC gauge transformation. In the above we
avoided this problem by defining this representation di-
rectly as a ten component column without any constraint.

Similarly, it is consistent with classical SU�5� gauge
transformations to restrict the classical U�D� gauge poten-
tial A�D� to the su�5� Lie algebra embedded in u�D�. Its
image under the SW map can be viewed as the NC gauge
potential in the D dimensional representation of NC SU�5�.
The covariant derivative of a matter field in this represen-
tation is

D̂mf̂ � �≠m 1 Â�D�
m �A��f̂ , (35)

where A is the commutative SU�5� gauge potential. Obvi-
ously, this construction also works for other gauge groups.
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Finally, due to the UV-IR mixing, the UV divergences
of NC quantum field theories result in new IR poles non-
perturbative in u [21,22]. For a comprehensive discussion
on this problem, see [23]. In order to give a reliable, con-
sistent description of NC electromagnetic interactions, or
any other low energy phenomena on NC space, it is nec-
essary to properly address all these problems. We leave
these issues for future study.
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