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We obtain exact expressions for the quasinormal modes of various spin for the Bañados-Teitelboim-
Zanelli black hole. These modes determine the relaxation time of black hole perturbations. Exact
agreement is found between the quasinormal frequencies and the location of the poles of the retarded
correlation function of the corresponding perturbations in the dual conformal field theory. This then
provides a new quantitative test of the anti–de Sitter/conformal field theory correspondence.
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The problem of how a perturbed thermodynamical
system returns to equilibrium is an important issue in
statistical mechanics and finite temperature field theory
[1]. For a small perturbation, this process is described by
linear response theory [1,2]. The relaxation process is then
completely determined by the poles, in the momentum rep-
resentation, of the retarded correlation function of the per-
turbation. On the other hand, black holes also constitute a
thermodynamical system. At equilibrium, the various ther-
modynamical quantities, such as the temperature and the
entropy, are determined in terms of the mass, charge, and
angular momentum of the black hole. The decay of small
perturbations of a black hole at equilibrium are described
by the so-called quasinormal modes [3]. For asymptoti-
cally flat black hole space-times, quasinormal modes are
analyzed by solving the wave equation for matter or gravi-
tational perturbations, subject to the condition that the flux
at the horizon is ingoing, with outgoing flux at asymptotic
infinity. The wave equation, subject to these boundary con-
ditions, admits only a discrete set of solutions with com-
plex frequencies. The imaginary part of these quasinormal
frequencies then determines the decay time of small per-
turbations or, equivalently, the relaxation of the system
back to thermal equilibrium.

On another front, over the past few years increasing evi-
dence has accumulated which shows that there is a corre-
spondence between gravity and quantum field theory in flat
space-time (for a review, see [4]). In particular, this dual-
ity has led to important progress in our understanding of
the microscopic physics of a class of near-extremal black
holes. The purpose of this Letter is to analyze whether
such a correspondence exists between quasinormal modes
in anti–de Sitter (AdS) black holes and linear response
theory in scale invariant finite temperature field theory. A
correspondence between quasinormal modes and the decay
of perturbations in the dual conformal field theory (CFT)
was first suggested in [5]. The analysis of [5] is based
on the numerical computation of quasinormal modes for
AdS-Schwarzschild black holes in four, five, and seven di-
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mensions. Further numerical computations of quasinormal
modes in asymptotically AdS space-times have been pre-
sented in [6–11]. For related discussions in the context of
black hole formation, see [12]. Qualitative agreement was
found with the results expected from the conformal field
theory side. However, a quantitative test of such corre-
spondence between quasinormal modes and the linear re-
sponse of the dual conformal field theory is lacking so far.
In this paper, we consider the �2 1 1�-dimensional AdS
black hole [13], and show that there is a precise quanti-
tative agreement between its quasinormal frequencies and
the location of the poles of the retarded correlation function
describing the linear response on the conformal field theory
side. Both computations are performed analytically. As a
result, we can identify not just the lowest, but the complete
(infinite) set of frequencies on both sides of the AdS/CFT
correspondence. In spite of its simplicity, this model plays
an important role also for black holes in higher dimensions
whose near-horizon geometry is AdS211 (see, e.g., [14] for
a review and references).

The metric of the Bañados-Teitelboim-Zanelli (BTZ)
black hole is given by

ds2 � 2sinh2m�r1dt 2 r2df�2 1 dm2

1 cosh2m�2r2dt 1 r1df�2. (1)

The angular coordinate f has period 2p, and the radii
of the inner and outer horizons are denoted by r2 and
r1, respectively. We have also set to unity the radius
of the anti–de Sitter space, � � 1. The dual conformal
field theory on the boundary is �1 1 1�-dimensional, the
conformal symmetry being generated by two copies of
the Virasoro algebra acting separately on left- and right-
moving sectors. Consequently, the conformal field theory
splits into two independent sectors at thermal equilibrium
with temperatures

TL � �r1 2 r2��2p, TR � �r1 1 r2��2p . (2)

According to the AdS3�CFT2 correspondence, to each
field of spin s propagating in AdS3 there corresponds an
© 2002 The American Physical Society 151301-1
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operator O in the dual conformal field theory character-
ized by conformal weights �hL, hR� with [4]

hR 1 hL � D, hR 2 hL � 6s , (3)

and D is determined in terms of the mass m of the field.
In particular, we have

D � 1 1
p

1 1 m2 , (4)

for scalar fields, and

D � 1 1 jmj , (5)

for both fermionic and vector fields. For a small pertur-
bation, the manner in which the field theory relaxes back
to thermal equilibrium can then be analyzed within linear
response theory [2]. One expects that at late times the
perturbed system will approach equilibrium exponentially
with a characteristic time scale. This time scale is inversely
proportional to the imaginary part of the poles, in momen-
tum space, of the correlation function of the perturbation
operator O . In this case, according to our proposal, the
relevant correlation function is the retarded real time cor-
relation function

D ret�x, x0� � iu�t 2 t0� ��O �x�,O �x0���T

� iu�t 2 t0�D̄ �x, x0� , (6)

where D̄ �x, x0� � D1�x, x0� 2 D2�x, x0� is the commu-
tator evaluated in the equilibrium canonical ensemble. For
a conformal field theory at zero temperature, the 2-point
correlation functions can be determined, up to a normaliza-
tion, from conformal invariance. At finite temperature T ,
one has to take into account the infinite sum over images to
render the correlation function periodic in imaginary time,
with period 1�T . The result of this summation in two di-
mensions was determined in [15], and depends only on the
conformal dimensions �hL, hR� of the perturbation opera-
tor. We have �x6 � t 6 s�,

D1�x� �
�pTR�2hR

sinh2hR �pTRx2 2 ie�
�pTL�2hL

sinh2hL �pTLx1 2 ie�
,

and a similar expression forD2�x� with e ! 2e. In order
to determine the location of the poles, we need to compute
the Fourier transform of (6). This is complicated by the
presence of the u function. We can, however, determine
the location of the poles indirectly. For this we first con-
sider the Fourier transform of the commutator D̄ �x�. This
integral can be evaluated using contour techniques, leading
to [16]

D̄ �k1, k2� ~ G

µ
hL 1 i

p1

2pTL

∂
G

µ
hR 1 i

p2

2pTR

∂

3 G

µ
hL 2 i

p1

2pTL

∂
G

µ
hR 2 i

p2

2pTR

∂
,

(7)

where p6 � 1
2 �v 7 k�. This function has poles in both

the upper and lower halves of the v plane. The poles
lying in the lower half-plane are the same as the poles of
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the retarded correlation function (6). Restricting the poles
of (7) to the lower half-plane, we find two sets of poles

vL � k 2 4piTL�n 1 hL� ,

vR � 2k 2 4piTR �n 1 hR � .
(8)

Here, and in the following, n takes the integer values �n �
0, 1, 2, . . .�. This set of poles characterizes the decay of the
perturbation on the CFT side, and coincides precisely with
the quasinormal frequencies of the BTZ black hole, as we
shall now show for fields of various spin.

Scalar perturbation �s � 0�.—Scalar perturbations are
described by the wave equation

�=2 2 m2�F � 0 . (9)

We use the ansatz

F � e2i�k1x11k2x2�R�m� , (10)

where x1 � r1t 2 r2f, x2 � r1f 2 r2t, and

�k1 1 k2� �r1 2 r2� � v 2 k ,

�k1 2 k2� �r1 1 r2� � v 1 k .
(11)

Here, v and k are the energy and angular momentum of
the perturbation. By changing variables to z � tanh2m,
we end up with the hypergeometric equation

z�1 2 z�
d2R

dz2 1 �1 2 z�
dR

dz
1

∑
k2

1

4z
2

k2
2

4
2

m2

4�1 2 z�

∏
R � 0 . (12)

The solution which is ingoing at the horizon is given by

R�z� � za�1 2 z�bs F�as, bs, cs, z� , (13)

where a � 2
ik1

2 , bs � 1
2 �1 2

p
1 1 m2 �, and

as �
�k1 2 k2�

2i
1 bs, bs �

�k1 1 k2�
2i

1 bs ,

cs � 1 1 2a .
(14)

The quasinormal modes for the scalar perturbations were
found in [17] by imposing the vanishing Dirichlet condi-
tion at infinity. Here, we reevaluate these modes using the
condition that the flux given by

F �
p

g
1
2i

�R�≠mR 2 R≠mR�� (15)

vanishes at asymptotic infinity. For m2 . 0, the asymp-
totic flux has a set of divergent terms, with the leading
term of order �1 2 z�2bs . Each of these terms is propor-
tional to [18] Ç

G�cs�G�cs 2 as 2 bs�
G�cs 2 as�G�cs 2 bs�

Ç2
. (16)

Thus, the asymptotic flux vanishes if cs 2 as � 2n, or
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cs 2 bs � 2n, i.e.,

i

2
�k1 6 k2� � n 1

1
2

�1 1
p

1 1 m2 � . (17)

Using (11), one sees that these are the quasinormal modes
found in [17]. For the scalar bulk field, we have hL �
hR � 1

2 �1 1
p

1 1 m2 �. Thus, we observe that (17) ex-
actly reproduces (8).

In AdS space-time, a negative mass squared for a scalar
field is consistent, as long as 21 , m2 , 0. A detailed
analysis shows that in this case there is a second set of
modes with as � 2n, or bs � 2n, that is hL � hR �
1
2 �1 2

p
1 1 m2 �. This is in fact expected since, for

21 , m2 , 0, there are two sets of dual operators with
D1 � 1 1

p
1 1 m2 and D2 � 1 2

p
1 1 m2 [4]. The

second set of quasinormal frequencies in this range then
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matches exactly the dual operators with D � D2. We note
in passing that the Dirichlet boundary condition suggested
in [5] leads to the same quasinormal modes for m2 . 0
but does not lead to any quasinormal modes for m2 , 0.

Fermion perturbation �s � 1�2�.— In [9], the quasi-
normal fermionic perturbation in the BTZ background has
been analyzed numerically. However, as expected, it is
possible to find analytic solutions in this simple case [19].
We begin with the Dirac equation

�D� 1 m�C � 0, C � e2i�k1x11k2x2�

√
c1

c2

!
. (18)

Following [19], we make the substitutions

c1 6 c2 �

s
coshm 6 sinhm

coshm sinhm
�c0

1 6 c 0
2� (19)

to obtain
2�1 2 z�z1�2≠zc
0
1 1 i�k1z21�2 1 k2z1�2�c 0

1 � 2�i�k1 1 k2� 1 m 1
1
2 �c 0

2 (20)

and a similar equation, where c
0
1, c

0
2, and k6 and 2k6 are interchanged. The solutions of these equations with ingoing

flux at the horizon are given by

c 0
1 � za �1 2 z�bf F�af , bf , cf , z�, c 0

2 �

µ
af 2 cf

cf

∂
za11�2�1 2 z�bf F�af , bf 1 1, cf 1 1, z� , (21)
where a � 2
ik1

2 , bf � 2
1
2 �m 1

1
2 �, cf � 1

2 1 2a, and

af �
k1 2 k2

2i
1 bf 1

1
2

,

bf �
k1 1 k2

2i
1 bf .

(22)

The asymptotic form �z ! 1� of c1 and c2 can now be
determined explicitly. In analogy with the scalar perturba-
tions, we then impose the condition that the flux [19]
F �
p

g C̄gmC 	 �1 2 z�21�jc1j
2 2 jc2j

2� (23)

vanishes at infinity. The resulting quasinormal modes are
then obtained as follows. For m . 0, the leading diver-
gent term in the asymptotic flux is of order �1 2 z�2b11.
Vanishing flux then requires that the coefficient

G�cf �G�cf 2 af 2 bf �
G�cf 2 af �G�cf 2 bf �

(24)

vanishes, that is,
i
2

�k1 1 k2� � n 1
1
4

1
m
2

or
i
2

�k1 2 k2� � n 1
3
4

1
m
2

. (25)
The above conditions imply that all coefficients of the
subleading, asymptotically nonvanishing, contributions to
the flux also vanish. Thus, we have precise agreement
with (8), where the left and right conformal weights are
given by hL � 1

4 1
1
2 m and hR � 3

4 1
1
2m. For m , 0,

one obtains a similar result with hL � 3
4 2

1
2 m and hR �

1
4 2 1

2m. Note again that imposing Dirichlet boundary
conditions for c1 and c2 at infinity would lead to the
absence of quasinormal modes for 21 , m , 1. We
can think of no physical reason for the absence of quasi-
normal modes in this range of masses. Thus, we take this
as another motivation for imposing vanishing flux at in-
finity, rather that Dirichlet conditions for asymptotically
AdS space-times. One should also note that for posi-
tive mass the spinor perturbation is asymptotically left
handed, whereas it is right handed for negative mass (see
also [4]).
Vector perturbation �s � 1�.—The massive Maxwell
field in AdS3 is described by the first order equation

el
ab≠aAb � 2mAl . (26)

Let

Ai � e2i�k1x11k2x2�Ai �m� , (27)

where A1,2 � A1 6 A2. Then, after changing variables
as before, we recover the scalar equation (12) for A1 and
A2 [19], where the scalar mass squared is replaced by
m2 1 2´im, with ´1 � 2´2 � 1. As in the scalar case,
the solutions with ingoing flux at the horizon are then
given by

A1 � e1za �1 2 z�by 11F�ay 1 1, by 1 1, cy , z� ,

A2 � e2za �1 2 z�by F�ay, by , cy , z� ,
(28)
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where a � 2
ik1

2 , by � m
2 , cy � 1 1 2a, and

ay �
�k1 2 k2�

2i
1 by , by �

�k1 1 k2�
2i

1 by .

(29)

Note that the two “scalar modes” in (27) are not indepen-
dent. The first order equation (26) relates the two coeffi-
cients e1 and e2 by

e2

e1
�

i�k1 2 k2� 1 m
i�k1 1 k2� 2 m

�
cy 2 by 2 1

by

. (30)
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The remaining component Am is related to A6 by

Am �
1

m coshm sinhm
≠�1A2� . (31)

For a real vector field, the particle flux is not defined. One
way to avoid this difficulty is to consider a complex vec-
tor field. Alternatively, one can consider the energy flux
divided by the redshifted frequency [16]. Both approaches
lead to the same conditions, namely, that A1 and A2 van-
ish at infinity. Thus, we impose the Dirichlet boundary
condition for A1,2. Using (30), one finds that the leading
asymptotic behavior �z ! 1� of the solutions (28) for posi-
tive m is given by
A1 	 �1 2 z�2m�2 G�cy�G�ay 1 by 2 cy 1 2�
G�ay 1 1�G�by�

,

A2 	 �1 2 z�12m�2�cy 2 by 2 1�
G�cy�G�ay 1 by 2 cy�

G�ay�G�by�
.

(32)

By imposing the vanishing Dirichlet condition at infinity for the components A1 and A2, we find the quasinormal modes
ay 1 1 � 2n or by � 2n, i.e.,

i

2
�k1 2 k2� � n 1 1 1

m

2
or

i

2
�k1 1 k2� � n 1

m

2
. (33)
Now, for spin s � 1, the conformal weights are either
jmj�2 or 1 1 jmj�2. Thus, we again find agreement
with (8), where the left and right conformal weights are
given by hL � 1

2m and hR � 1 1
1
2 m. For negative m,

the situation is analogous to the fermionic perturbations.
One finds the same conditions with hL � 1 2

1
2m and

hR � 2 1
2m.

In conclusion, we have shown that there is quantita-
tive agreement between the quasinormal frequencies of the
BTZ black hole and the poles of the retarded correlation
function of the corresponding perturbations of the dual
conformal field theory. The relaxation time for the decay
of the black hole perturbation is determined by the imagi-
nary part of the lowest quasinormal mode. Our analysis
thus establishes a direct relation between this relaxation
time and the time scale for return to equilibrium of the
dual conformal field theory. This result also provides a
new quantitative test of the AdS/CFT correspondence.
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