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Rectifying Behavior in Coulomb Blockades: Charging Rectifiers
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We introduce examples of tunneling and diffusive, Coulomb-regulated rectifiers based on the Coulomb
blockade formalism in discrete and continuum systems, respectively. Nonlinearity of the interacting
dynamics profoundly enhances the inherent asymmetry of the devices by reducing the Hilbert space of
accessible states. The discrete charging rectifier is structurally similar to hybrid molecular electronic
rectifiers, while the continuum-charging rectifier is based on a model of ionic flow through a pore (ion
channel) with an artificial branch. The devices are formally related to ratchet systems with spatial
periodicity replaced by a winding number: the current.
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Ratchets typically involve diffusive or driven motion of
noninteracting particles in a potential whose principal fea-
ture is its lack of inversion symmetry [1]. This chirality,
typified by the “sawtooth” potential, extracts energy from
colored noise or an unbiased driving force and thereby im-
parts directed motion to the particles of the system. In
certain biochemical contexts [2], a similar “chiral dynam-
ics” is seen in the directed motion of a discrete reaction
coordinate, typically governed by a rate equation. The
quantum Brownian problem in a sawtooth potential [3],
when driven beyond the linear regime, has also been re-
duced to an effective discrete rate problem, with the rates
determined via tunneling path integrals in the semiclassi-
cal limit, and the system was shown to exhibit thermally
reversible rectification.

Besides the reaction coordinate formalism, which in-
cludes interaction only implicitly, interparticle interactions
in ratchet systems have been treated by site-exclusion mod-
els [4], nearest-neighbor spring constant interactions [5],
Kuramoto-type interactions [6], and finite size, hard-core
repulsion studies [7]. The recently developed Coulomb
blockade formalism, however, also expresses (incoherent)
transitions between many-body states of quantum dots,
clusters and arrays in terms of a master equation [8], with
the states specified by the numbers of electrons, ni , on
the collection of dots (in addition to voltages on gates
and leads). Further, the investigation of rectifying effects
in the mesoscopic regime, where it is known that these
charging effects can dominate transport, has become re-
cently very active [9,10]. Therefore it is natural to examine
systems where single charge, Coulomb interaction physics
produces the parameter-dependent asymmetry of rate ma-
trices that are the hallmark of ratchet and other rectifying
mechanisms.

In Figure 1 we introduce as an archetype a triple-dot
Coulomb blockade rectifier. This structure can be readily
realized in a two-dimensional electron gas (2DEG) het-
erostructure. Interaction is conveniently introduced by a
capacitance matrix, and transport proceeds according to
the usual single electron tunneling formalism [8]. We il-
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lustrate a portion of the “stability diagram” for three dots,
with zero source-drain bias, in Fig. 1(C). A quadruple
point exists where the states with a single excess electron
on each dot, denoted j1�, j2�, and j3�, and the zero elec-
tron state j0� are all mutually degenerate. The gates ad-
jacent to the dots can be tuned to this quadruple point, in
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FIG. 1 (color). (A) Schematic of triple-dot rectifier. Tunnel
junctions (red blocks) are leaky capacitors allowing quantum
mechanical, single electron tunneling. Dots 2 and 3 capaci-
tively interact, but tunneling is forbidden, making the structure
asymmetric. External gates coupled to dots allow adjustment of
stable electron configuration, assuming zero source-drain bias.
(B) Illustration of connectivity between states in triple-dot rec-
tifier. Notation for states defined in text. In the forward-bias
condition state j3� is a trap since the rate g31 exceeds g13 ex-
ponentially. (C) Stability diagram for the triple-dot showing
the vertex where states j0�, j1�, j2�, and j3� are degenerate (red
arrow). ri is the induced charge on dot i proportional to the
voltage on the gate adjacent to i. (D) Potential contour from
the self-consistent electronic structure calculation for GaAs-
AlGaAs 2DEG heterostructure with the model triple-dot rectifier
surface gate pattern. The dot centers are at �210 meV, saddle
points of barriers at �14 meV. All capacitances employed in
I-V calculations (Fig. 2) are determined from this model. Ca-
pacitances between dots and leads can be adjusted by modulat-
ing the gates controlling the “quantum point contact” openings
(gaps in the gates).
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a fashion similar to the operating principle of the double-
dot electron pump [11]. For sufficiently low temperatures
the Coulomb interaction prohibits any other states of the
system. Specifically, two electrons can never be simulta-
neously in the array. Chirality is introduced [Fig. 1(A)]
by placing an infinite tunnel barrier between dots 2 and
3, even though they continue to interact capacitively. In
the restricted Hilbert space of these four states the evo-
lution of the state of the system is described by a mas-
ter equation �W � G�V�W, where W is the vector of
the four occupation probabilities and the off-diagonal ele-
ments of the transition matrix G�V � are, via the “global
rule” [8,12], gij � DFij��e2Rt�exp�bDFij� 2 1�	 with
i, j � 0, 1, 2, 3. The isolation of dot 3 from all but dot 1
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implies that g03 � g23 � g30 � g32 � 0. Diagonal ele-
ments of G�V � are minus the sum of off-diagonal elements
in the same column. The global free energy of the system
is F � Anmqn�1

2 qm 2 rm� 2 DIVI (summation conven-
tion assumed) and DFij is the change in this energy due
to the transition from state j to state i. Here qm is the
excess charge on dot m, rm is the gate-induced charge on
m, and matrix Anm is the inverse of the capacitance sub-
matrix which connects only the dots (i.e., not the leads or
gates) [13]. Also, VI are the lead voltages �I � 1, 2� and
DI represents the total charge transferred from lead I into
the array; the inverse temperature is b � 1�kBT and the
tunnel resistance between dots is Rt.

The steady state solution for the probability of occupy-
ing state j1� is determined to be [14]
W1 �

∑
1 1

g31

g13
1

g01�g20 1 g02 1 g12� 1 g21�g10 1 g20 1 g02�
g10�g02 1 g12� 1 g20g12

∏21

. (1)
Also, we find W2 � W1�g10g21 1 g20�g01 1

g21����g20g12 1 g10�g02 1 g12��, and the current
is given simply by I�V� � g21W1 2 g12W2, where
V 
 V2 2 V1.

Recently Linke et al. [9] considered the rectifying be-
havior of a triangular cavity in a 2DEG channel which,
beyond the linear source-drain regime, introduced asym-
metry into the T matrix for transmission through the sys-
tem. This arrow-shaped experimental device resembles a
weak “herringbone ratchet,” as introduced by Cecchi and
Magnasco [15] (see below). The purely quantum mechani-
cal, one-body scattering effects would lead to rectifica-
tion for our device as well, even without charging effects
included (i.e., treating the triple dot as a fixed potential
scatterer to independent electrons). However, when the
charging energy is comparable to or greater than the tem-
perature, e2�C * kBT (C is a typical capacitance), inter-
action becomes dominant and, as we have seen, the Hilbert
space of the system is reduced so that, at most, one excess
electron can be in the triple-dot system.

The result is the following. Near V � 0 the current
is still symmetric, I�V � � 2I�2V � [see upper inset of
Fig. 2], due to the assumed degeneracy of the levels. For
finite bias, capacitive coupling between leads and dots
breaks this degeneracy. A forward source-drain bias lowers
the energy of j3� relative to j1� and an electron which enters
dot 3 (i) becomes trapped and (ii) prevents other electrons
from entering the first dot. This is effectively a jamming
process [16]. Bias-dependent asymmetry in the matrix G

is ultimately responsible for breaking the current-voltage
symmetry leading, at low T , to “negative resistance” [15].
We can define the “trapping ratio” as the rate into dot 3
divided by the rate out �g31�g13� � exp�bDF13�. DF13
depends linearly on the source voltage V1 and is modu-
lated by the capacitance between the source and the various
dots. This implies that tunneling out of the “jamming dot”
is favored when the bias is reversed. Note that the effect
is similar to that in a hybrid molecular electronic (HME)
rectifier [17]. The principle of HME rectifiers is based on
specific natural configurations, for certain molecules, of
the HOMO and LUMO in space and is not normally con-
sidered to be a product of electron-electron interaction. In
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FIG. 2. I-V characteristic for a triple-dot rectifier. The cur-
rent in the forward-bias �V . 0� direction is strongly blocked
by electron trapping in dot 3; C � 0.083 fF, Cdd � 0.025 fF.
The dashed lines are from the master equation with T � 0.05 K
(lower curve for V . 0) and 4.0 K. The solid lines, T � 0.05,
0.5, 1.0, 2.0, and 4.0 K (from bottom for V . 0), are full Monte
Carlo simulations. Deviation occurs when voltage induces mul-
tiple charge states in the device. The trend with T is reversed
for V , 0 (i.e., lines cross at V � 0). Upper inset: closeup
of low voltage region for T � 0.05 K; the line is the master
equation, and the triangles are Monte Carlo. Lower inset: I-V
(Monte Carlo) for C � 0.056 fF, Cdd�C � 1�3.3 (solid line);
C � 0.083 fF, Cdd�C � 1�3.3 (dotted line); C � 0.083 fF,
Cdd�C � 1�5 (dash-dotted line); C � 0.167 fF, Cdd�C � 1�5
(dashed line). All T � 0.05 K. The top three curves offset ver-
tically by 0.05, 0.1, and 0.15 pA for clarity.
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our case the specific allowed states depend critically on the
many-body state and not merely the static properties of the
individual quantum dots themselves.

Rectification in discretized ratchet models [3] also arises
from parameter-dependent asymmetry in the rate matrix.
The rate equation is often truncated to model a single pe-
riod of the potential, and a winding number, which in our
case is the source-drain current, counts the particles trans-
ferred from one period to the next.

Full 3D simulations of the electronic structure of a pro-
totype, GaAs-AlGaAs rectifier, Fig. 1(D), provide typical
capacitance values. These simulations [18] are effective
mass, local density approximation solutions of the elec-
tronic structure, including the GaAs wafer profile, gate
geometries and voltages, donor density, and wide lead re-
gions, carried out within density functional theory. The
particular results shown here have further assumed the den-
sity in the 2DEG x-y plane to be separable from that in z
and given by the 2D Thomas-Fermi approximation.

With the 2DEG layer positioned 140 nm below the sur-
face, with a donor layer of density 3.1 3 1011 cm22 at
20 nm above the GaAs-AlGaAs interface, quantum dots
of radius r � 200 nm are formed, each containing roughly
150 electrons. The self-capacitance of one dot is C � 5 3
10217 F with a charging energy e2�C � 3 meV. Interdot
capacitances vary with barrier thicknesses; typically
Cdd � 0.8 3 10217 F, or roughly 15% of the self-
capacitance. Using these capacitances, the free energy
differences in G can be computed. The current given by
the steady state solution to the master equation, Eq. (1),
is shown in Fig. 2. We also show full Monte Carlo (MC)
simulations of the transport through this structure [12,19],
where the Hilbert space is not restricted to only four states.
The linearity near V � 0 and the jamming of the current
at larger biases are evident in both results; however, for
sufficiently large bias, the MC simulation shows that the
current again increases. In this case the bias is sufficient
to move the system away from the quadruple point and
other, multiple electron, charge states become accessible,
i.e., the blocking is overcome.

Quantum mechanical tunneling is generally irrelevant
in biological systems, where ratchet science finds some of
its most profound applications. Nonetheless, the correlat-
ing effect of single charge interaction can be significant
even in continuum systems characterized by drift and dif-
fusion. In a recently developed model for ionic flow in
biological ion channels, the capacitance model of Coulomb
blockade physics was used for a 1D approximation of the
electrostatic interaction of the ions in a background di-
electric medium (i.e., water) [20]. A continuum limit of
the capacitance array model can be taken and the result-
ing equation is equivalent to a drift-diffusion treatment of
interacting particles. The Brownian dynamics of ion flow
through a pore, including a Langevin force, ion diffusivi-
ties, and short-range ion-ion repulsion (added “by hand”),
were thereby simulated self-consistently. The computation
time for the simulation is reduced significantly in compari-
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son to models which solve a full 3D Poisson equation
at each time step [21]. Furthermore, in contrast to self-
consistent drift-diffusion studies, which have remarkable
success modeling the I-V characteristics of realistic ion
channels [22], the discrete nature of the ion charge is in-
cluded in the model, allowing for treatment of noise prop-
erties and single charge correlation effects.

Here, we employ an ion-channel–like system and
demonstrate that single charging phenomena can induce
rectification in a continuum system. We artificially add an
asymmetric branch to an ion channel, Fig. 3(A). Asym-
metry is manifested in the model by a finite capacitance
between the end of the branch and one of the leads.
Aside from the branch, which has no particular biological
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FIG. 3 (color). (A) Schematic for the branching channel
rectifier. Based on biological ion channel structure, a tube filled
with a dielectric medium (water), isolated ions execute Brown-
ian motion between electrochemical baths at fixed potentials V1
and V2 � 2V1. The main channel length is 3 nm, branch length
0.5 nm, and channel and branch radii 0.15 nm. The total inter-
acting energy computed at each time step of the Monte Carlo
simulation employing an approximation of 1D capacitance array,
modeled to fit the actual interaction of charges in a dielectric-
filled cylinder, kH2O � 80, surrounded by a medium with
kprotein � 2 (see Ref. [20]). (B) I-V characteristics from MC
simulations at (from the bottom at V � 0.3 mV) T � 150,
200, 250, and 300 K employing 0.75, 1.5, 3, and 6 3 106

time steps, respectively. The top (dash-dotted line) line is
the linear extrapolation of V , 0 I-V for T � 300 K. The
parameters for the sodium ion are employed, including mass
mNa � 3.8 3 10223 g, radius rNa � 0.095 nm, and diffusion
coefficient DNa � 1.3 3 1025 cm2 s21 (see Ref. [21]). The
inset is the current added to its mirror image same order of
curves as above, showing rectification even at room temperature
(top dashed line is zero).
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motivation [23], the electrostatic and transport parameters
are taken from the structure of a typical ion channel (using
Na as the diffusing ion) [21], see Fig. 3. A typical value of
the capacitance length which approximates the Coulomb
interaction of a pair of point charges along the central
axis of a dielectric-filled tube with dielectric constant
kH2O � 80 surrounded by a “protein” with kprotein � 2
is C � 8 3 10220 F nm. A capacitance to ground must
also be included but, for these parameters, is very small.

As in the triple-dot model, ions which diffuse into the
upper branch are drawn toward the drain in forward bias
and, while trapped there, inhibit subsequent ions from ap-
proaching the branch junction. In reverse bias the ions
vacate the branch, and flow is uninhibited. The Coulomb
interaction between two ions at opposite ends of the chan-
nel is approximately 15 meV or about 170 K. We find
that even at T � 300 K the repulsion between individual
charges is sufficient to induce a noticeable asymmetry into
the I-V characteristic, Fig. 3(B). The asymmetry is even
more pronounced for lower, albeit nonphysical, tempera-
tures. Thus a “device” of the form of Fig. 3(A), in the
presence of a rocking potential or colored noise, would
pump ions in the reverse-bias direction.

Note that this structure is similar in configuration to the
model studied in Ref. [15]. The principal difference is that,
with interparticle interaction, the trapping of a single ion
in a crevice in the channel serves to inhibit the flow of
other ions.

Interaction reduces the accessible phase space for a sys-
tem of flowing particles. Depending on the asymmetry
built into the system, this can lead to a blockade or jam-
ming of current in one direction while leaving flow unin-
hibited in the other direction. We have discussed only two
possible realizations of rectifying behavior resulting pri-
marily from particle-particle interaction as treated within
the capacitance matrix formalism of the Coulomb block-
ade, but many other examples can be formulated. As a final
example, a spin-blockade mechanism in asymmetric, seri-
ally coupled quantum dots has recently been proposed for a
diode whose phase space blocking results from a combina-
tion of charging and Pauli exclusion effects [24], resulting
in what might be called a Coulomb spin-blockade rectifier.

The author thanks H. Linke, P. Hänggi, and R. Eisenberg
for helpful conversations.
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