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We report a study of the Aharonov-Bohm effect, the oscillations of the resistance of a mesoscopic ring
as a function of a perpendicular magnetic field, in a GaAs two-dimensional hole system with a strong
spin-orbit interaction. The Fourier spectra of the oscillations reveal extra structure near the main peak
whose frequency corresponds to the magnetic flux enclosed by the ring. A comparison of the experimen-
tal data with results of simulations demonstrates that the origin of the extra structure is the geometric
(Berry) phase acquired by the carrier spin as it travels around the ring.

DOI: 10.1103/PhysRevLett.88.146801 PACS numbers: 73.63.–b, 03.65.Vf, 71.70.Ej
An important and, at times, mysterious concept in mod-
ern physics is the phase factor that a quantum mechanical
wave function acquires upon a cyclic evolution. This
phase factor can lead to interference phenomena which are
experimentally observable. An example is the Aharonov-
Bohm (AB) effect [1,2], the oscillations in the resistance of
a mesoscopic conducting ring as a function of an external
magnetic flux piercing the ring. The origin of the oscilla-
tions is the phase acquired by the electron wave as it travels
around the ring, and the interference of this wave with
itself. The phase in this case is equal to 2p�Fext�F0�,
where Fext � pr2 ? Bext and F0 � �h�e� is the flux
quantum (r is the ring radius and Bext is the external per-
pendicular magnetic field). As a result, the resistance of the
ring exhibits oscillations periodic in Bext with a frequency
equal to pr2��h�e�. A requirement for the observation
of such oscillations is of course that the electron motion
around the ring be phase coherent.

In a seminal paper [3], Berry showed that, even in the
absence of electromagnetic fields, a quantum state under-
going an adiabatic evolution along a closed curve in pa-
rameter space develops a phase which depends only on this
curve [4]. Thanks to its fundamental origin, this so-called
geometric (or Berry) phase has attracted considerable at-
tention [5]. However, its experimental observation has
been scarce. Evidence for Berry’s phase was obtained
early on in experiments with neutrons, fiber optics, and
quadrupole resonance of nuclei [5], but its observation in
a condensed-matter system has proved challenging.

To observe Berry’s phase in an electronic system with
spin, Loss et al. [6] proposed to study transport in a meso-
scopic ring structure in the presence of an orientationally
inhomogeneous (e.g., radial) magnetic field. This can be
experimentally implemented via fabricating the ring from
a material with spin-orbit (SO) interaction. In recent, pio-
neering studies [7,8], the AB oscillations were studied in
an InAs two-dimensional (2D) electron system with strong
SO interaction. The Fourier transforms of over 30 traces of
AB oscillations were averaged and a small splitting of the
main peak in the final Fourier spectrum was interpreted as
a possible manifestation of the spin Berry phase. Here we
0031-9007�02�88(14)�146801(4)$20.00
report AB measurements on a GaAs 2D hole system with
well-characterized SO interaction [9]. The Fourier spectra
of the AB oscillations contain an extra structure, often in
the form of side peaks, near the central peak which occurs
at pr2��h�e�. The shape of this extra structure evolves
with the range of magnetic field over which the spectra
are taken. We compare this evolution with the results of
a realistic simulation which includes Berry’s phase in AB
oscillations of a system with SO interaction. The compari-
son provides a striking demonstration of Berry’s phase.

The starting material for our experiment is a
modulation-doped GaAs�AlGaAs heterostructure, with a
2D hole system (density �2.4 3 1015 m22 and mobility
�30 m2�V s) at a distance of 100 nm below the surface.
Using standard optical and electron-beam lithography
techniques and wet etching, we fabricated the ring struc-
ture whose micrograph is shown in Fig. 1(a). The inner
and outer radii of the ring have nominal values of 0.475
and 0.725 mm, respectively. The mean-free path is about
2 to 3 mm for the 2D holes in an unpatterned region of
the sample. However, because of the narrow width of the
ring’s arms and surface depletion, a front gate is needed to
populate the arms with carriers. It is therefore not possible
for us to precisely know the mean-free path of the holes
in the ring. We measured the resistance of the ring at a
temperature of about 20 mK in a dilution refrigerator and
as a function of magnetic field perpendicular to the plane.

Figure 1(b) shows an example of the measured magne-
toresistance of the ring. The resistance, after subtraction
of a smooth background [see Fig. 1(c)], reveals clear AB
oscillations with an amplitude of �5 V [10]. Our key re-
sult is that these oscillations are not at a single frequency:
as shown in Fig. 2(a), the Fourier transform (FT) of the
oscillations exhibits extra structure whose form depends
on the range of the magnetic field over which the signal is
analyzed. In the remainder of this Letter, we will demon-
strate that the extra structure is a manifestation of Berry’s
phase in a system with SO interaction.

An important and relevant characteristic of the GaAs 2D
hole systems is a strong SO interaction which, combined
with the inversion asymmetry of the confinement potential,
© 2002 The American Physical Society 146801-1
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FIG. 1. (a) Scanning electron microscope picture of the ring
structure. (b) A typical trace of the Aharonov-Bohm oscillations
measured in GaAs 2D holes at a front gate voltage of 20.7 V.
(c) Data in (b) after subtraction of a smooth background signal.
(d) Schematic diagram of a carrier, in the presence of an external
magnetic field, traveling around a ring structure in a system with
spin-orbit interaction. Its spin precesses around the direction of
the total magnetic field ( �Bext 1 �Beff).

leads to significant spin splitting of the energy bands in the
absence of an applied magnetic field [9,11]. The inversion
asymmetry stems partly [12] from an electric field, which
is perpendicular to the 2D plane. In its rest frame, a moving
carrier in such systems feels an effective in-plane magnetic
field �Beff� which is determined by the vector product of
the carrier’s velocity and this electric field. The field Beff

couples to the carrier’s spin so that the energy bands at
any nonzero wave vector are split into two spin subbands.
As a result, the Fermi wave vectors of the opposite-spin
carriers occupying the two spin subbands differ by a finite
value, Dk. As we show below, Beff and Dk are the key
parameters that allow us to demonstrate the observation of
Berry’s phase.

Let us consider the phase that the wave function of a
particle acquires as it travels around the ring structure of
radius r. As described in the opening paragraph, in the
presence of an external, perpendicular magnetic field Bext,
the particle picks up an AB phase dAB � 2p�Fext�F0�,
where Fext � Bextpr2 is the magnetic flux enclosed by
the ring. This dAB phase leads to the well-known AB
oscillations of the resistance at a frequency of Fext�F0 �
pr2��h�e�. In the FT spectra of Fig. 2(a), the main peak
observed at a frequency of 181 T21 corresponds to a ring
radius of 0.488 mm, consistent with the size of our ring.
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FIG. 2. Fourier transform spectra of the Aharonov-Bohm os-
cillations for different ranges of magnetic field as indicated. Top
panels (a) and (a9) show FT spectra of experimental data taken
with a gate bias of Vg � 20.686 V. The bottom panels (b) and
(b9) show the results of simulations based on Eq. (5) of the text
with Beff � 0.55 T, Dk � 2.05 3 107 m21.

For a system with SO interaction, however, an additional
(Berry’s) phase comes about due to the field Beff.

As shown schematically in Fig. 1(d), the spin of the
particle traveling around the ring precesses around the net
magnetic field ( �Bext 1 �Beff). In this situation the total
phase acquired by the particle is determined by the angle
(u� between the net field and the normal to the plane.
Depending on the particle spin, this phase is given by
[13–19]

d�"" or ##� � dAB 6 dB , (1)

d�"# or #"� � dAB 6 dD , (2)

with

dB � p�1 2 cosu� , (3)

dD � prDk sinu , (4)

where u � tan21�Beff�Bext�. The arrow notation is used
here to mark the direction of the particle spin as it travels
along the two arms of the rings, e.g., "" means the particle
moves with like spins in both arms and "# means the par-
ticle moves with opposite spins. As a result, we expect the
oscillatory part of the ring resistance to be proportional to
the sum of four terms [20]:
146801-2
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DR ~ cos�dAB 1 dB� 1 cos�dAB 2 dB�
1 cos�dAB 1 dD� 1 cos�dAB 2 dD� . (5)

We now show, via simulations, that Eq. (5) indeed
describes well the experimental data. Figure 2(b) presents
the FT of the simulated DR, as expressed by Eq. (5)
with Beff � 0.55 T, Dk � 2.05 3 107 m21, and r �
0.488 mm. These values for the parameters Dk and Beff
are reasonable and are consistent with our knowledge of
the SO interaction and spin splitting in samples similar to
the one used here [9]. The qualitative resemblance of the
simulated FT to the measured data in Fig. 2 is remarkable.
In particular, the simulation faithfully reproduces the side
peaks observed in the experimental data. Moreover, the
evolution of these side peaks with the range of magnetic
field over which the FT is obtained is similar for the
simulated and measured data. When the FT is performed
over a small range of magnetic field, only a broad peak,
centered at pr2��h�e�, and very weak side peaks are
observed. As the range is made larger, the side peaks
become more visible and their positions shift slightly
towards the central peak position. We emphasize that, in
all our Fourier analyses, we used the Hamming window
[21] which significantly suppresses side peaks generated
due to the finite range of data [22]. Therefore, the side
peaks observed in our data and simulation are genuine
and not artifacts of the FT.

The results shown in Figs. 2(a9) and 2(b9) provide fur-
ther evidence that Eq. (5) indeed qualitatively describes
the experimental data. For these spectra, we shifted the
field range over which the FT was taken so that the range
was no longer symmetric around Bext � 0. As seen in
these figures, in FT spectra of both experimental data and
simulations, the central peak splits into two strong peaks
and the side peaks become weak. These observations also
argue against the side peaks possibly coming from an ef-
fective multipath structure in our sample. If such structure
were present so that the peaks observed in the FT spec-
tra came from rings of different radii, we would expect
the peaks not to qualitatively depend on the magnetic field
range over which the FT is performed.

In our measurements, we have found that, even when
the magnetic field range over which the FT is performed
is kept symmetric around Bext � 0, the shapes of the FT
spectra can qualitatively change if the range is made very
large. To illustrate this point, in Figs. 3(a) and 3(a9), we
present FT spectra of experimental data taken at a gate
voltage (Vg � 20.6 V), different from Fig. 2 data [23].
Similar to the data of Fig. 2(a), the FT spectra exhibit a
main peak and two side peaks which grow as the magnetic
field range of the FT analysis increases. When the range
is increased beyond 20.2 to 10.2 T, however, the shapes
of the FT spectra qualitatively change. The central peak
at 171 T21 starts to split into two peaks and, when the
range is further increased (e.g., from 20.3 to 10.3 T),
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FIG. 3. The evolution of the FT spectra of the Aharonov-Bohm
oscillations as the magnetic field range over which the FT is
performed is increased. Panels (a) and (a9) show spectra of
experimental data taken at Vg � 20.600 V, while panels (b)
and (b9) show the simulation results with Beff � 0.5 T, Dk �
1.692 3 107 m21. Note the splitting of the main (central) peak
and the reemergence of this peak in both the experimental data
and simulations.

the central peak reappears but is now straddled by two
strong and near side peaks. Meanwhile, the original side
peaks keep increasing in size so that, for the largest range
shown, they are nearly as strong as the structure near the
center frequency. Our simulations, shown in Figs. 3(b) and
3(b9), reveal that this evolution of the FT can indeed be
qualitatively reproduced based on Eq. (5) and reasonable
values of Beff and Dk [24].

Some remarks regarding the values of parameters Beff
and Dk and how they affect the shape of the FT spectra
are in order. First, to produce a spectrum with side peaks
as seen in the experimental data, it is necessary to include
both dB and dD phases, and to assign nonzero values to
Beff and Dk. Second, the values of Beff and Dk used in
simulations of Figs. 2 and 3 were chosen to qualitatively
match the experimental data. Although we do not pre-
cisely know Beff and Dk for our present 2D hole system,
the values we use are reasonable and realistic based on our
previous measurements of the spin splitting in similar sys-
tems [9]. Third, the shapes of the simulated FT spectra are
in fact quite sensitive to the parameter Dk. Small changes
in Dk can change the shape of the FT qualitatively and
146801-3
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cause the side peaks to shift in position and magnitude
or even disappear. An inspection of Eq. (4) reveals that
the FT spectra depend on Dk in an approximately periodic
manner: for a fixed value of Beff, when rDk changes by an
even integer, dD changes by 2p and the FT of DR vs Bext
in Eq. (5) almost repeats. We have looked for such sensi-
tivity and periodicity in the experimental data. Since the
spin-splitting depends on the perpendicular electric field,
we can, in principle, tune the splitting and therefore Dk
by changing the gate bias. Our data so far reveal that the
shapes of the FT spectra are indeed very sensitive to the
gate bias, and even hint at a periodic behavior. However,
we need more systematic data to conclusively show this
trend.

The overall agreement between our experimental data
and simulations provides strong evidence for the observa-
tion of Berry’s phase in a system with spin-orbit induced
spin splitting. Some discrepancies, however, exist. For ex-
ample, the side peaks in the simulations are always equal
in magnitude and are symmetric in position with respect to
the main peak. In the experiments, on the other hand, we
often observe some asymmetry in their positions and mag-
nitudes. The asymmetry is puzzling [25]; it may be related
to the finite width of the ring’s arms in our sample. Future
theoretical work, as well as detailed measurements of the
evolution of the Fourier spectra with parameters such as
gate bias, will hopefully lead to a quantitative understand-
ing of the shapes of these spectra.
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