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Supercurrent through Hybrid Junctions with Anisotropic Cooper-Pair Condensates
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A general formula for the supercurrent between different internal structures in a wide class of hybrid
junctions is derived on the basis of the Andreev-reflection picture. The formula extends existing formulas
and also enables us to analyze novel B-phase�A-phase�B-phase junctions in superfluid 3He systems. We
propose a mechanism for p states due to the l̂ texture in the A phase of the junction, which could
elucidate major features of the p states with higher critical current (H states) discovered in superfluid
3He weak links. The bistability of the p states is also discussed.
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Superfluid systems with internal degrees of freedom
produce diverse ordered structures, which provide a new
arena for exploring the fertile physics behind them. The
Josephson effect [1] extracts the global phase resulting
from the spontaneous breakdown of gauge symmetry.
Moreover, it also exposes the internal structures formed
from other broken symmetries. In fact, so-called p junc-
tions associated with high-Tc superconductors provide
convincing evidence for d-wave symmetry [2,3], and re-
cent experiments on Pb-Sr2RuO4-Pb Josephson junctions
[4] could be explained by p-wave superconductivity in
Sr2RuO4 [5,6]. In addition, metastable p states observed
in superfluid 3He weak links [7–9] are considered to be a
signature of texture due to the internal degrees of freedom
of p-wave order parameters [10–12], but the mechanism
for the p states remains unsettled. In this Letter, we
derive a general formula for supercurrent, applicable to a
wide class of hybrid junctions between different internal
structures in unitary states, on the basis of the Andreev-
reflection (AR) picture developed by Furusaki and Tsukada
(FT) [13], and then apply it to a novel hybrid junction
consisting of B-phase�A-phase�B-phase in superfluid 3He
systems giving an alternative explanation of the p states.

The Andreev reflection is a unique quantum scattering
process which occurs at the boundary between conden-
sates: an injected particlelike quasiparticle (PLQ) to the
inteface is reflected back by the pair potential as a holelike
quasiparticle (HLQ) and vice versa [14]. The supercurrent
through junctions can be considered as a series of the An-
dreev reflection at two interfaces. A Cooper pair breaks
into two quasiparticles at one interface, namely one out-
going PLQ and one incoming HLQ. The quasiparticles
propagate to the other interface and thus combine to form
a Cooper pair. The pair is then transferred from one side to
the other. Therefore, the supercurrent is written by means
of scattering coefficients related to the Andreev reflection.

Consider a junction composed of N 1 2 different su-
perfluid regions separated with flat interfaces perpendicu-
lar to the z axis. The interfaces are located at z � zi (i �
0, 1, 2, . . . , N) with z0 � 0 and zN � L. We shall denote
2-1 0031-9007�02�88(14)�145302(4)$20.00
these regions by L (� C0,z , 0), Ci (zi21 , z , zi , i �
1, . . . , N), and R (� CN11, L , z), respectively. We as-
sume that the order parameter is uniform in each region.
We also assume that the effective mass m, Fermi velocity
yF , and Fermi wave number kF are the same in all re-
gions. The potential barriers at the interfaces are ignored
for simplicity. We shall use a triad �x̂, ŷ, ẑ� for a frame of
reference.

The AR coefficients are obtained by solving the
Bogoliubov–de Gennes equations which can be reduced
to the Andreev equations in a quasiclassical approximation
[14]. The Andreev equations for an arbitrary type of
pairing [15] are"
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(or hi
ss0) being the scattering coefficient in which an

injected quasiparticle with spin s0 is scattered as a PLQ
(or HLQ) with spin s. Figure 1 shows the AR processes
where a PLQ is injected with different spin, i.e., (a) up-
spin and (b) down-spin. By introducing scattering coef-
ficient matrices bpi � �pi

ss 0� and bhi � �hi
ss 0�, these two

processes can be treated as a single process. The AR

coefficient matrix is given by ba � bh0. The coefficientsbS i � � bpi bhi�t are connected by the continuity condi-

tion for the wave function: Mk̂
i �zi� bS i � Mk̂

i11�zi� bS i11,

namely, bS i � Mk̂
i �zi�21M k̂

i11�zi� bS i11 � Ti
bS i11. For a

whole system, we obtain√ b1ba
!

�
NY
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√ bbb0
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bTphbThp
bThh

! √ bbb0
!

, (3)

where b0 is the 2 3 2 zero matrix and �bTqq0� are each 2 3 2
parts of the 4 3 4 transfer matrix from R to L. Therefore,
the AR coefficient matrix ba is obtained as

ba � bThp
bT21

pp . (4)
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FIG. 1. (a) The AR process in which a PLQ with up spin
is injected from the region L reflected as a HLQ. The solid
and dashed arrows denote PLQ and HLQ propagations, respec-
tively. The symbols on the arrows are the scattering coefficients.
(b) The process in which a PLQ with down spin is injected.

The currents are calculated from the wave functions
with the AR coefficients. At finite temperatures T , the cur-
rent is evaluated by statistical averaging with the help of
the temperature Green’s function, G�z, z 0, kk, vn�, where
vn � p�2n 1 1��b (n � 0, 61, 62, . . .) with b �
1�kBT , and kk � kF�k̂x, k̂y , 0� is the momentum in the
xy plane. The temperature Green’s function is constructed
from the scattering coefficient matrices under the FT
prescriptions [13]. For z # z0 , 0, the temperature
Green’s function is given by
G�z, z0, kk, vn� � i
m

h̄2kFk̂z
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where k̂2 � kk�kF 2 k̂z ẑ and fMk̂
0 is obtained by an ana-

lytic continuation E ! ivn from Mk̂
0 . The matrix b̄a de-

scribes the reverse process in which a HLQ injected from
L is reflected as a PLQ. The matrices b̄a and ba are related
by b̄a�E, k̂� � ba�E, k̂2�y.

A general formula for the supercurrent through weak
links at temperature T per unit area is derived as
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0 j

2. This is the central result of
this Letter. This formula is applicable to any type of hy-
brid junctions between unitary states with any symmetry.
Note that our formula still preserves the original FT form
expressed by the difference between AR coefficients, de-
scribing the net current carried by the two processes: the
scattering of a PLQ into a HLQ and its reverse process.
Our formula covers the previous formulas, for example
the Kurkijärvi formula [16] for superfluid 3He systems, the
Tanaka-Kashiwaya formula [17] for unconventional singlet
superconductors and so on [5,18,19], by taking appropriate
conditions such as L ! 0 and/or bDCi ! 0.

Our formula also enables us to analyze new kinds of
junctions. One example is B-phase�A-phase�B-phase
(BAB) junctions in superfluid 3He systems, which could
be realized by using the experimental setup for the
Andreev reflection at AB interfaces [20]. Here we intro-
duce a wall with a pinhole in the A-phase region as shown
in Fig. 2, in order to imitate the Berkeley’s system and
to produce appreciable phase drops across the junction
[21]. Therefore, this system contains four different super-
fluid regions.

According to the AR picture, the current is greatly in-
fluenced by the structure of order parameter. In spin-
triplet p-wave condensates, ordered structures (textures)
are formed by spontaneously broken spin-orbit symmetry.
The order parameter of the A phase is defined by a triad
�ŵ1, ŵ2, l̂� in orbital space and a vector d̂ in spin space. For
the B phase we need a rotational matrix R�n̂, u� with rota-
tional axis n̂ and rotational angle u relating the spin space
to the orbital space. Therefore, special attention should
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FIG. 2. Schematic diagram of a BAB junction.
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be paid to l̂ in the A phase and to n̂ in the B phase.
Indeed, for 3He-B weak links, the n̂ vector determines the
current-phase relations [10–12]. While for 3He-A weak
links, the striking effect has been predicted [16,22] that no
supercurrent can flow if the l̂ vectors between the link are
antiparallel.

The boundary conditions at AB interfaces is determined
by minimizing the surface energy [23–25]. Here we con-
sider the dipole-dipole interaction only in the B phase since
the width of the A-phase layer is assumed to be less than the
dipole coherence length. There are two boundary condi-
tions (i) d̂ � R�n̂, uL�ŵ1 and (ii) ŵ1 k ẑ (therefore l̂�ẑ),
where uL � cos21�21�4� (Leggett angle). We assume that
the condition (i) is always satisfied from energy considera-
tions. The texture of A phase should be formed so as to
satisfy boundary conditions at both AB interfaces and the
wall. To gain condensation energies, the l̂ vector tends to
orient perpendicular to the wall, while parallel to the AB
boundary. Because of the competition between them, l̂
is likely to lean considerably from the wall without bend-
ing if A-phase layer is thin. Thus we assume that the l̂
vectors in both sides of the A phases tilt from the y axis
by the angle a in the yz plane. We also assume the n̂
vectors in the B phases are antiparallel for a later conve-
nience since actual configurations depend on experimental
geometries [12].

To unearth the role of the A phase in the BAB junction,
we investigate the effect of l̂ textures on current-phase
relations. Figure 3(a) shows current-phase relations with
different l̂-vector orientations at T � 0.1Tc. Here, the
width of the A-phase region L is 6j0 where the coherence
length j0 in the B phase at zero temperature is given
by j0 � �7z �3��48�1�2�h̄yF�pkBTc� with z being the
Riemann zeta function. We observe p states on current-
phase relations around a � 0.2p 	 0.35p. The p states
in 33He-B are due to the cancellations of currents carried
by quasiparticles with different spins which acquire
different excess phases from the internal spin structure of
the order parameter while travelling through the system
(the n̂-texture mechanism). The p states in Fig. 3(a) are
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

Phase Difference ϕ/π  

C
ur

re
nt

I/
I 0

(a)

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2

Phase Difference ϕ/π 

C
ur

re
nt

I/
I 0

(b)

-0.4

-0.2

0

0.2

0.4

0 0.5 1 1.5 2

Phase Difference ϕ/π

C
ur

re
n

t
I/

I 0

(c)

FIG. 3. The current-phase relations of BAB junctions. (a) a dependence: a � 0 	 0.5p with the step of 0.05p in decreasing
order of gradient at the origin. L � 6j0 and T � 0.1Tc . The dotted line denotes the current for L � 0, namely, BB junctions.
(b) L dependence: L � 0, 0.6j0, 2j0, 6j0, 10j0, and ` in increasing order of critical current. T � 0.1Tc and a � 0.2p . (c) T
dependence: T � 0.1Tc 	 0.9Tc with the step of 0.1Tc in decreasing order of critical current. a � 0.2p and L � 6j0. Here,
I0 � DBk2

F�4p h̄ 	 1 3 1023�cm2 s.
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quite different from those of the n̂-texture mechanism
(the dotted curve) in shape as well as magnitude of the
current. This infers that quasiparticles acquire the excess
phase in the A phase in addition to the B phase.

Figure 3(b) shows current-phase relations with different
widths L. Clearly the relation reduces to that of 3He-B
weak links as L ! 0. The relations change drastically
in their shape and magnitude from the relation of zero
width as L increases. In particular, the current suddenly
drops when the phase difference exceeds the value at the
maximum current. We confirm that the current in the large
L limit is identical to that of 3He-A weak links. As a result,
the p states can form due to excess phase acquired from
the texture in A phase. In the intermediate widths, both l̂
and n̂ characteristics are intermingled.

Let us discuss the mechanism for p states due to the l̂
texture in the A phase. The d̂ vector in the A phase changes
its direction through the first AB boundary condition
(i) when the l̂ vector tilts from the interface. Since the
n̂ vectors in each B phase are antiparallel, the d̂ vectors
orient two different directions, d̂l and d̂r . In this case,
quasiparticles with different spins, namely up spin and
down spin, see the different phases while traveling through
the A phase. It will be clear if we take a spin-quantization
axis as d̂l 3 d̂r . The gap matrices are diagonalized as

bDk̂
l ~

µ
2e2ifl

0
0 eifl

∂
, bDk̂

r ~

µ
2e2ifr

0
0 eifr

∂
,

(7)

where fi (i � r or l) is the azimuthal angle of d̂i in the
plane perpendicular to d̂l 3 d̂r . Quasiparticles acquire the
excess phase fr 2 fl, namely, the relative angle between
d̂l and d̂r . This excess phase modifies the current-phase
relations, and results in the p states due to the current
cancellations in spin space (the l̂-texture mechanism). An
essential difference from the n̂-texture mechanism [10]
is that the excess phase fi has no k̂ dependence in A
phase, keeping the current cancellation intact. This makes
p states pronounced and suppresses the critical current
reduction. Note that there are no mechanisms to fix the
145302-3
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d̂ vectors with different directions in A phases themselves
so that specific mechanisms, i.e., the AB interfaces, are
required for p state formation in 3He-A weak links.

In experiments [8], the two distinct p states with differ-
ent critical currents called L and H states, which depends
on detailed cooldown procedure, are observed; “Rapid
cooling through Tc and high levels of acoustic noise in
the cell at the time of the superfluid transition favor the
L state over H.” The existing theories based on the n̂-
texture mechanism [10–12], however, seem insufficient to
explain both states at the same time. Successive experi-
ment strongly suggests that a pseudo-A phase could be
formed around the orifice in 3He weak links [26]. The
pseudo-A phase formation near the surface has been also
predicted [27]. These support our proposal of the BAB
junction as a possible model for the experiment.

Figure 3(c) shows the temperature dependence of cur-
rent-phase relations under a � 0.2p and L � 6j0 in-
dicating l̂-texture character. The current-phase relations
possess the major characteristics of the H state; (1) the
phase at maximum current is over 0.5p, (2) the cur-
rent steeply drops after maximum current (slanted sine
curve), and (3) the magnitude of critical current (e.g., 0.2I0

at T � 0.5Tc, which corresponds to a mass current of
	4 3 1028 g�sec) is in reasonable agreement with the
current in experiment. Thus the l̂-texture mechanism could
elucidate major features of the H states. On the other hand,
under the noisy background, the A-phase layer near the
wall might be difficult to establish. A dominant mecha-
nism to the current is due to the n̂-texture mechanism, re-
sulting in the L states. Therefore, the bistability of the
p states would originate from different textures (l̂ or n̂)
depending on the existence of the pseudo-A phase near
the wall.

We have assumed flat interfaces without thickness even
though order parameters need to change on the scale of
the coherence length. However, qualitative features of
our results would be unchanged in spite of our simplified
model since only asymptotic behaviors are relevant in scat-
tering theory. Self-consistent calculations taking into ac-
count spatial dependence and phase-difference dependence
(anisotextural effect [11,12]) of order parameter might be
needed for quantitative discussions.

In summary, we have derived a general formula for su-
percurrent through any type of hybrid junctions between
unitary states with any symmetry and applied to novel
BAB junctions in superfluid 3He. We have proposed the
p-state formation mechanism due to l̂ textures in the
A phase. The bistability of the p states could be ex-
plained by two different (l̂ or n̂) textures in superfluid
3He systems.
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Note added.—During the preparation of this Letter, we
learned of a theory [28] related to Josephson current in a
similar system.
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