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Opening Optical Four-Wave Mixing Channels with Giant Enhancement
Using Ultraslow Pump Waves
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We show that by strongly modifying the dispersion properties of a four-level system, nonexisting wave
mixing channels can be opened and significantly enhanced. Specifically, we show that coherent optical
four-wave mixing with a pump wave mediated by electromagnetically induced transparency (thereby
propagating with an extremely slow group velocity) will lead to many orders of magnitude enhancement
in the amplitude of the generated wave. Contrary to common belief, a large transparency window, which
causes a large propagation velocity, actually diminishes efficient mixing wave production.
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Since the first observation by Franken et al. [1], opti-
cal wave mixing has developed into one of the center-
pieces of modern technology. In these highly nonlinear
processes, mixing-wave production efficiency has always
been of primary importance. However, recent works [2] on
ultraslow optical-wave propagation have opened new pos-
sibilities for improvement, and perhaps even new research
directions, in the field of nonlinear optics. A great majority
of these works have focused on group velocity reduction
of an optical pulse in the context of a three-level system.
However, we believe that more emphasis should be given
to the concept of dispersion/index manipulation. Indeed,
it is dispersion/index manipulation that is at the heart of
the electromagnetically induced transparency (EIT) pro-
cess that has been exclusively used in all optical group ve-
locity reduction experiments reported to date. The concept
of dispersion/index manipulation is much broader than just
group velocity reduction. Our research indicates that in
the field of nonlinear optics it will have many profound
consequences.

In this Letter, we report the first theoretical investigation
of optical coherent four-wave mixing (FWM) with a weak
pump wave that travels with an extremely slow group
velocity. Two key contributions are presented in this study.
First, we show that the EIT [3] window created by a cou-
pling laser drastically modifies the dispersion properties
for a pump wave traveling in the medium, and opens a co-
herent FWM channel that would otherwise not be possible.
Correspondingly, the on-resonance pump wave propagates
in this medium with an extremely slow group velocity and
minimum absorption, thereby allowing efficient, coherent
FWM production. Without the EIT process the on-
resonance pump wave would be completely absorbed,
leading to an incoherent FWM output. Second, we show
that contrary to common belief, a wider transparency
window, resulting in less loss and higher propagation
velocity for the pump wave, actually significantly dimin-
ishes the coherent FWM efficiency. Specifically, we show
that with an ultraslow group velocity the FWM process
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acquires many orders-of-magnitude enhancement. To the
best of our knowledge, the results presented here have
never been reported in the literature and represent a new
research direction that may have profound technological
applications.

Consider a typical four-level system interacting with one
pulsed and two cw laser fields (Fig. 1). The pulsed pump
field Ep (frequency vp , pulse length t, tuned to j0� ! j2�
resonance) serves as the first step of the three-photon ex-
citation of state j3�. A cw field E2 (frequency v2) pro-
vides two photons to complete the three-photon excitation
of state j3�. A second cw field Ec (frequency vc, tuned to
resonance) couples states j2� and j1� to provide dispersion
manipulation of state j2�. With these definitions, a set of

FIG. 1. Energy level diagram with relevant laser excitations for
a scheme of four-wave mixing generation where the propagation
velocity of the pump wave �vp� is modified strongly by the
presence of a coupling laser �vc� in an EIT configuration.
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atomic equations of motion describing this system can be
written as

�A0 � iV02A2 1 iVm03A3 , (1a)

�A1 �
g1

2
A1 1 iV12A2 , (1b)

�A2 �
g2

2
A2 1 iV21A1 1 iV20A0 , (1c)

�A3 � i

µ
dm 1 i

g3

2

∂
A3 1 iVm30A0 1 iV

�2�
32 A2e2iDkz .

(1d)

Here Aj and gj are the jth atomic wave function amplitude
and decay rate, respectively. V20 � D20Ep��2h̄�, V21 �
D21Ec��2h̄�, and Vm30 � D30Em��2h̄� are one-half of the
Rabi frequencies for the respective transitions, and V

�2�
32

is the direct two-photon Rabi frequency from state j2� to
j3�. In deriving these equations, we have made the ap-
propriate phase transformation to eliminate fast oscillatory
factors, and introduced the notations Dk � 3kp 2 km and
dm � vm 2 v30. The key element in the present system
is the L scheme established among the three lower states
using the coupling laser and a weak pulsed laser that also
serves as the first step pump for FWM. As we will show,
when the group velocity of the pump field is reduced, a
phase-matched FWM wave can be produced with high effi-
ciency because its amplitude acquires a giant enhancement.
Specifically, we show that when the group velocity of the
pump wave is V

� p�
g � 1.4 3 1026c, a phase-matched co-

herent FWM field propagating with V
�m�
g � V

�p�
g can be

produced efficiently in an otherwise poorly phase-matched
system.

To proceed further, and to simplify the mathematics, we
will neglect ground state and pump pulse depletion. Un-
der these conditions Eq. (1) can be solved simultaneously
with Maxwell equations that describe the propagation of
the pump and FWM fields. Taking A0 � 1, and Fourier-
transforming Eq. (1), we immediately obtain, in dimen-
sionless form,

a2 � tW20D�h� , (2a)

a3 � tWm30Dm�h� 1 tW20tV
�2�
32 Dm�h�D�h�e2iDkz .

(2b)

Here, h � vt is the dimensionless Fourier transform pa-
rameter and a2, a3, W20, Wm30 are the Fourier transforms
of A2, A3, V20�z, t�, Vm30�z, t�, respectively. The dimen-
sionless dispersion functions are given by

D�h� �
�h 1 ig1t�2�

jV21tj2 2 �h 1 ig1t�2� �h 1 ig2t�2�
and

Dm�h� � 2
1

�h 1 dmt 1 ig3t�2�
.
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Notice that W20 and Wm30 obey Maxwell’s equations for
the pump and FWM fields,

≠W20

≠z
2 i

h

ct
W20 � ik02a2 ,

≠Wm30

≠z
2 i

h

ct
Wm30 � ik03a3 . (3)

Here k02�03� � 2tNvp�m�jD02�03�j
2��h̄c�, and N is the

atomic concentration. Substituting Eq. (2) into Eq. (3),
one immediately obtains, for the generated wave,

Wm30�z, h� � k03ct2�tV
�2�
32 �W20�0, h�

3 ei�z�ct�h�11k02ct2D�h��h�D�h�Dm�h�

3

µ
1 2 e2i�z�ct�B

B

∂
, (4)

where W20�0, h� � �t�
p

2�V20�0, 0�e2h2�4 is the
Fourier transform of V20�z, t� with a Gauss-
ian profile at the entrance of the medium, and
B � 2Dkct 1 k02ct2D�h� 2 k03ct2Dm�h�.

Equation (4) is the main result of the present work. It
contains rich dynamics enabled by the strong dispersion
manipulation proposed here. Close inspection of Eq. (4)
reveals four main contributions of our work. (1) A co-
herent FWM channel which otherwise would not exist is
opened by the EIT process. (2) The pump wave preserves
its Gaussian pulse shape, travels with an ultraslow group
velocity, and acquires negligible pulse distortion. (3) The
FWM wave travels with an ultraslow group velocity that
matches the ultraslowly propagating pump wave. (4) Sig-
nificant enhancement to the FWM is possible by reducing
the group velocity of the pump wave.

To make these results more understandable, let us con-
sider the case where jV21t2j . max�gLt, g2t� (gL is the
pump wave linewidths). Under this condition the disper-
sion function D�h� can be expanded and further truncated
to give D�h� � D0 1 D1h 1 D2h2. This leads to an
analytical solution for both the pump and generated fields,
thereby providing much insight into the propagation effect.
If one neglects D2, which is on the order of 1�jV21tj4,
one finds that the pump wave preserves its Gaussian shape
with negligible pulse broadening, and travels with a group
velocity given by V

�p�
g � c��1 1 k02ct2Re�D1��, where

Re�D1� � 1�jV21tj2. If the driving field can be made
sufficiently weak while still preserving the conditions de-
scribed above, the group velocity will be much less than
the speed of light in vacuum for a sufficiently high atomic
vapor concentration. A similar consideration for the dis-
persion function Dm�h� indicates that the group veloc-
ity of the mixing wave is mainly determined by V

�m�
g �

c��1 1 k03ct2��dmt�2�. This means that group velocity
matching between the two waves is possible. Notice that
to achieve phase matching dmt must be small (typically
k03 , k02). Therefore, a significant enhancement to the
coherent FWM process is possible.
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FIG. 2. Plot of the dimensionless quantity j
Wm30

tV
�2�
32 tV20�0,0��

p
2
j as

a function of h. The thick and thin solid lines are for the
ultraslow wave scheme. The dashed and dotted lines are for
the fast wave scheme magnified 107 times. For the thick solid
line and dashed line, the detuning is dmt � 21.25, whereas
for the thin solid line and dotted line the detuning is dmt �
1.25. The parameters for the slow wave scheme are g1t �
0.01, g2t � 500, g3t � 5, V21t � 65, k02ct2 � 3 3 109,
and k03ct2 � 3 3 107, and the phase matched group veloci-
ties are V

� p�
g � V �m�

g � 1.4 3 1026c. For the fast wave scheme,
g1t � 0.01, g2t � 500, g3t � 5, V21t � 650 000, k02ct2 �
3 3 109, and k03ct2 � 3 3 107, and the phase matched group
velocities are V

� p�
g � V �m�

g � 0.99c.

In Fig. 2, we have plotted the scaled Fourier transform
of the mixing wave as a function of h for two sets of pa-
rameters. The first set of parameters is chosen such that
a significant propagation velocity reduction to the pump
wave is achieved. With these parameters, the group ve-
locity of the pump and mixing waves are well matched
at V

� p�
g � V

�m�
g � 1.4 3 1026c. For comparison, we also

show the result when the EIT process is achieved with a
much wider transparency window. In this case the group
velocity of the pump wave is nearly the speed of light in
vacuum �V � p�

g � V
�m�
g � 0.99c�. Notice that the field am-

plitude for the generated wave is much smaller than that
of the ultraslow pump wave case. Direct comparison of
these two results shows that a giant enhancement to the
coherent FWM generation can be achieved with ultraslow
propagation. We point out that Eq. (4) indicates that there
are two generated waves that travel with apparently dif-
ferent velocities. One wave is generated locally, acquiring
the velocity of the pump wave V

� p�
g . The other wave was

generated early in the medium, and therefore has the veloc-
ity of V

�m�
g . Close inspection of Eq. (4) shows that when

phase matching is achieved, both waves are combined into
one FWM wave that travels with the same group velocity
as that of the ultraslow pump wave. Of course this must
be the case in order to have the waves constructively inter-
fere, resulting in a coherent FWM amplitude buildup. This
143902-3
FIG. 3. Plot of the real part of the dimensionless quantity B
as a function of h. Phase matching can be achieved near where
Re�B	 � 0. The thick and thin solid lines are for the ultraslow
pump wave case. The dashed and dotted lines are for the fast
pump wave case. The detuning associated with each curve is
the same as in Fig. 2.

result can also be clearly seen in Fig. 3, where the real part
of B is plotted. This parameter contains information about
the difference in the group velocity of the pump and gen-
erated wave. It is clearly seen that at the phase matched
points, where Dk � 0, this velocity difference can be re-
duced to zero.

The general features of wave mixing with extremely
slow fundamental waves achieved by the dispersions/index
manipulation process discussed in the present work are
also expected in many other nonlinear processes [4,5].
Such significant enhancement may lead to new compact,
efficient, narrow-bandwidth coherent light devices. Since
the choice of state j3� is quite arbitrary, the significant en-
hancement reported here can be used to generate coherent
radiation in a wavelength region where no coherent source
is currently available. With this method it is also possible
to vary the coupling wave Rabi frequency, thereby produc-
ing a highly efficient, yet tunable, coherent FWM output.
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