
VOLUME 88, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 8 APRIL 2002

142503-1
Exact Stochastic Mean-Field Approach to the Fermionic Many-Body Problem

O. Juillet1 and Ph. Chomaz2

1LPC/ISMRA, Boulevard du Marechal Juin, F-14050 Caen Cedex, France
2Grand Accélérateur National d’Ions Lourds, BP 5027, F-14076 Caen Cedex 5, France

(Received 19 July 2001; published 22 March 2002)

We investigate a reformulation of the dynamics of interacting fermion systems in terms of a stochastic
extension of time-dependent Hartree-Fock equations. From a path-integral representation of the evolution
operator, we show that the exact N-body state can be interpreted as a coherent average over Slater
determinants evolving in a random mean-field. The imaginary time propagation is also presented and
gives a similar scheme which converges to the exact ground state. In addition, the growth of statistical
errors is examined to show the stability of this stochastic formulation.
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Even with present-day computing facilities, the
theoretical study of the structure and the dynamics of
many-fermion systems, such as nuclei, atomic clusters, or
quantum dots, remains a formidable task which requires
approximations to step down to feasibility. In such a con-
text, Hartree-Fock (HF) theory [1] is usually considered
as the basic tool. The complex many-body problem is
then reduced to an effective single-particle description in
which the interaction is communicated through a common
and self-consistent mean-field. In nuclear physics, static
HF calculations provide a very good starting point to
investigate many properties of the ground state [2]. The
time-dependent model (TDHF) is also successful at low
energy in heavy-ion reactions [2] and for the nonlinear
electron dynamics in metal clusters [3]. Nevertheless,
the HF description only treats in average the two-body
0031-9007�02�88(14)�142503(4)$20.00
interaction and various schemes have been developed
to take into account correlation effects beyond the HF
approximation [4–8].

The aim of this Letter is to present a new formula-
tion of the many-fermion problem in terms of mean-field
equations with a one-particle–one-hole (1p-1h) Gaussian
white noise. The stochastic one-body process has an av-
erage identical to the exact solution and can be used for
spectroscopic or dynamical studies as illustrated in exactly
soluble models.

To begin, let us consider the building of correla-
tions on a Slater state jC� during a small time step Dt
and under a general Hamiltonian H �
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j akal containing a two-body interaction.
Introducing the occupied states ja� and the orthogonal
particle orbitals ja�, it follows immediately from the
Schrödinger equation that
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aâ1
aâ2
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where U�Dt� is the evolution operator and jâ� the
biorthogonal hole basis which satisfies �â1 ja2� � da1a2

to take into account a possible nonorthogonality of the
occupied states ja�. In addition, the coefficients in the
expansion (1) are given by
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where the notation tr corresponds to a trace over the one-
body space. r �

P
a ja� �âj is the one-body density and

V �r� the Hartree-Fock mean-field potential with matrix
elements �ijV �r� j j� �

P
kl Vikjlrlk. Furthermore, given

any two-body interaction, it is always possible in a finite di-
mensional one-body space to find Hermitian one-body op-
erators Os so that the 2p-2h amplitude (2b) is written as
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The evolution (1) of the Slater state jC� to first order in
the time step Dt becomes

U�Dt� jC� � exp
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with O�ph�
s �

P
a,a�ajOsja�a1

a aâ. The dynamics can
then be linearized with the help of a Hubbard-Stratonovitch
transformation [9–11] allowing us to interpret each evolu-
tion under the square of a 1p-1h operator as an infinite
superposition of one-body evolutions, each of them in a
fluctuating auxiliary field s distributed with a Gaussian
© 2002 The American Physical Society 142503-1
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weight
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where x is real and O is an operator. Defining the vector �s
of all the auxiliary fields ss that are introduced by the path
integral (5) to linearize the evolution (4), and introducing
the shorthand notation d �sG� �s� �

Q
s dss�2p�21�2 3

exp�2s2
s �2�, we finally obtain
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According to Thouless’s theorem [1], the evolution of
the Slater determination jC� under any of the fluctuating
1p-1h Hamiltonians (6) gives another Slater determinant.
To first order in Dt, the correlated wave function (6) can
thus be brought, with the help of (2a) and (2b), to the form
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with the following variation of the hole states:
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In the end, the full dynamics of an uncorrelated state jC�,
during a small time step Dt under a one- and two-body
Hamiltonian, can be represented as the coherent average
of Slater determinants that have evolved with a mean-field
Hamiltonian hmf � T 1 V�r� 2

1
2 rV �r� supplemented

with a 1p-1h noise h� �s� �
P

s asss

p
Dt �1 2 r�Os.

This fluctuating potential is non-Hermitian and depends
linearly on external number fields, each distributed with
a unit Gaussian weight. We also emphasize that the
deterministic part differs from the standard Hartree-Fock
approach by including the term 2

1
2rV�r�, which in

fact arises naturally to take into account the difference
between the total mean-field energy and the sum of
the HF eigenvalues [2]. The formulation (8),(9) of the
dynamics can be extended to many time steps and then
corresponds to the discretized realization of a Markovian
Langevin equation in the one-body Hilbert space [12]. In
consequence, going to the continuous limit Dt ! 0, and
denoting by E�· · ·� the expectation of a random functional,
142503-2
we can state that
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where the evolution of the hole states ja�t�� is determined
by the following Itô stochastic differential equation with
the initial condition ja�0�� � ja�:
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where Ws refers to independent real Wiener processes with
vanishing ensemble averages and that obey to the Itô sto-
chastic calculus [12]

E���dWs�t���� � 0, dWs1 �t� dWs2 �t� � dt ds1s2 . (12)

It is also important to specify that such a formulation
provides a reinterpretation of the exact evolution of the
N-body density operator D�t� in terms of a mean over
dyadics in which the bra and the ket are different Slater de-
terminants jC�t�� �

Q
a a1

a�t�j �, jC0�t�� �
Q

a0 a1
a0�t�j �

with ja�t�� and ja0�t�� evolving independently under the
stochastic Hartree-Fock equation (11):

D�t� � E�jC�t�� �C0�t�j� . (13)

The necessary use of pairs of stochastic uncorrelated wave
functions to reconstruct the exact full density operator con-
stitutes the originality of our approach in comparison with
previous schemes [8] where a quantum incoherent propa-
gation of states was assumed. By a totally different way
and for fermion systems, we end up with a representation
of the N-body density matrix analogous to those assumed
in Ref. [13] for the dynamics of Bose-Einstein conden-
sates. Furthermore, our path-integral point of view pro-
vides a derivation of the stochastic term to be included in
the mean-field dynamics.

Finally, the stochastic mean-field interpretation (10),(11)
of the evolution process can be extended to imaginary
time to obtain the following representation of the Boltz-
mann operator when it acts on a Slater determinant jC� �Q

a a1
a j �:
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with ja�0�� � ja� and

dja� �

∑
T 1 V �r� 2

1
2

rV �r�
∏
ja�db

1
X

s
as�1 2 r�Osja� dWs , (15)

as �

s
h̄jvsj

2

Ω
1, vs . 0 ,
i, vs , 0 .

The correlated many-body ground state can then be
obtained in the limit of large b where exp�2bH� behaves
like a projector eliminating all the overlaps with excited
eigenstates. For example, realistic nuclear structure
142503-2
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problems could be studied with the scheme (14),(15) in
the context of the quantum Monte Carlo diagonalization
method [5]. Using the closure relation over Slater determi-
nants, the representation (14),(15) also allows one to recon-
struct the Boltzmann operator by a similar method as those
recently proposed for Bose-Einstein condensates [14].
Finally, the time-dependent stochastic Hartree-Fock equa-
tions (10),(11), provide the theoretical basis of equivalent
Monte Carlo methods for dynamical problems.

We now examine statistical errors in the stochastic
scheme (10),(11). This can be achieved by calculating the
average of the norm of the deviation between the exact
evolution and a stochastic realization. Using Eq. (10), we
are thus interested in the indicator:

x�t� � E��C�t� jC�t��� 2 1 with jC�t�� �
Y
a
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a�t�j � .

(16)

Furthermore �C�t� jC�t�� is the determinant of the overlap
matrix ga1a2

�t� � �a1�t� ja2�t�� associated to the Fermi
sea of jC�t��. But, with the help of Itô’s differentiation
rules [12], ga1a2 evolves according to
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In consequence the variation of x during an infinitesimal
time dt is given by
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where ss�t� refers to the quantal fluctuations of the one-
body operators Os in the uncorrelated stochastic wave
function jC�t��. Such a result then implies that the ap-
proach will never explode in a finite dimensional one-body
space: in this case, a trivial upper bound for the variance
s2

s �t� is in fact given by the square of the largest eigenvalue
ls of the one-body observable Os in the N-body space and
thus, after time integration,

x�t� # exp

√
t
2

X
s
jvsjl

2
s

!
. (19)

As a first step towards the use of the previous stochastic
formulation in practical problems, we investigate some nu-
merical implementations in exactly soluble models. More
precisely, we consider a system of V fermions distributed
among a number n of energy orbitals i � 0, . . . ,n 2 1,
each of which is V degenerate. In addition, the Ham-
iltonian of the system is expanded onto the bilinear op-
erators Gij �

PV
v�1 a1

ivajv which generates a U�n� Lie
algebra. This nontrivial model corresponds to a general-
ization of the Lipkin-Meshkov-Glick model [15] which is
often used to check the validity of approximate many-body
techniques. We first focus on the three-level model with
142503-3
the usual Hamiltonian:
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In addition we choose equidistant levels (´0 � 0, ´1 � ´,
´2 � 2´) and set h � VV�´ � 2 where the mean-field
dynamics is a mixture of integrable and chaotic trajec-
tories [16]. Figure 1 presents the evolution of V � 10
fermions equally shared among the three levels in a Slater
determinant at the initial time. 5 3 107 simulations
trajectories have been performed. We have shown only the
mean number of particles in the ground orbital but other
observables have also been considered: In all cases, the
expectation values obtained in the stochastic mean-field
scheme are in agreement with the exact dynamics within
the error bars. Let us now test the description of the
ground state. The implementation of the propagation in
imaginary time (14),(15) has been realized in the model
(20) where the ground state and Hartree-Fock energies
are, respectively, Eo � 21.6836 and EHF � 21.25 in
units of ´. By an average over many simulations, the
mean energy E�b� calculated with the stochastic one-body
scheme rapidly converges to the exact binding energy
Eo: For b´ � 2 and 106 realizations we have found
E�b� � 21.6876 6 0.0078 in perfect agreement with
the exact ground state. We have also checked the method
for a more correlated system (V � 3, ´ � V � 1): In
this case, Eo � 21.7016, EHF � 21, and we obtain
E�b� � 21.705 01 6 0.009 39 at b � 1.5 and after 106

simulations. Finally, to study the dynamics of an initial
correlated state, a coupling between the stochastic evo-
lutions in real and imaginary time is investigated in the

FIG. 1. Implementation of the stochastic Hartree-Fock scheme
in the three-level Lipkin model for V � 10 fermions with h �
VV�´ � 2. The stochastic mean-field dynamics is compared
to the exact and Hartree-Fock evolution. We have considered
5 3 107 simulations for the initial Slater determinant jC� �QV

v�1
a1

0,v1a1
1,v1a1

2,vp
3 j �.
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two-level Lipkin model. The Hamiltonian H � ´Jz 1

VJ2
x is expressed in terms of the quasispin algebra

Jx � �G10 1 G01��2, Jy � �G10 2 G01��2i, and Jz �
�G11 2 G00��2. The system is supposed to be in its
ground state at time t � 0 when we suddenly change the
sign of the two-body interaction. The results are shown in
Fig. 2: An average over a large set of stochastic one-body
simulations allows one to reconstruct the exact many-body
solution with, however, larger statistical error bars than in
the previous calculations due to the addition of the errors
coming from the imaginary time evolution to the one in-

FIG. 2. Dynamics of an initial correlated wave function in the
two-level Lipkin model for V � 20 fermions. For t , 0, we
suppose ´ � 1, V � 20.1, and reconstruct the ground state
using (15) until b � 5 and with the wave function

QV
v�1 a1

1,vj �
as a starting point. At time t � 01, the interaction is suddenly
changed to V � 0.1 and we then apply the one-body evolution
scheme (11) on each stochastic Slater determinant obtained with
the propagation in imaginary time. An average over 108 of such
simulations is compared to the exact dynamics of the one- and
three-body observables Jz [part (a)], J3

z [part (b)]. Similar results
have been obtained for the two-body operator J2

z .
142503-4
troduced by the subsequent real time dynamics. It should
be noticed that not only one-body observables are cor-
rectly predicted, but also two and three and in fact many-
body quantities as shown in the lower part of the figure.

In conclusion, we have presented a new theoretical
method to solve exactly the N-body Schrödinger equa-
tion for a fermionic system with binary interactions.
In particular, we have shown that the full dynamics of
an uncorrelated state can be formulated in terms of the
coherent average of Slater determinants that have evolved
following a stochastic Hartree-Fock equation. The noise
comes from the linearization of the 2p-2h residual inter-
action through a Hubbard-Stratonovitch transformation.
A similar stochastic one-body interpretation has been
proposed for the Boltzmann operator and statistical errors
have been investigated to show the stability of the scheme.
Finally, by coupling an imaginary and a real-time fluc-
tuating mean-field propagation, the exact dynamics of a
correlated wave function can be reached. The numerical
implementation in exactly soluble models has confirmed
the formal results: In all the cases we have studied, the
stochastic Hartree-Fock method when averaged over many
simulations gives the correct result with a reasonable
statistical spread. First applications to a realistic problem
are under development.
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