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Simple Method to Make Asymptotic Series of Feynman Diagrams Converge
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We show that, for two nontrivial lf4 problems (the anharmonic oscillator and the Landau-Ginzburg
hierarchical model), improved perturbative series can be obtained by cutting off the large field contribu-
tions. The modified series converge to values exponentially close to the exact ones. For l larger than
some critical value, the method outperforms Padé’s approximants and Borel summations. The method
can also be used for series which are not Borel summable such as the double-well potential series. We
show that semiclassical methods can be used to calculate the modified Feynman rules, estimate the error,
and optimize the field cutoff.
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Perturbative series associated with Feynman diagrams
are commonly used in particle physics, solid state physics,
optics, and chemistry [1]. One remarkable success of this
method is the prediction of the values of the anomalous
magnetic moments of the electron and the muon with an
incredible accuracy. Perturbative methods are also used
to perform precision tests of the standard model of elec-
troweak and strong interactions [2]. Despite these suc-
cesses, it has been known for a long time [3,4] that series
calculated from Feynman diagrams are not convergent but
asymptotic. In other words, the range of validity shrinks
with the order. One can improve this situation by using
Padé approximants [5], either on the original series or a
Borel sum [6] of the series, if meaningful. However, even
in the cases where the convergence of these alternate pro-
cedures can be proven, the convergence is very slow when
the coupling is too large. In addition, for short series,
it is difficult to estimate the error and to choose the best
approximants.

In this Letter, we construct improved perturbative series
which converge to values which are exponentially close to
the exact ones. The error can be estimated analytically.
The method can be applied on the lattice and in the con-
tinuum and works well when the methods mentioned above
are inefficient or not applicable. The method is a pertur-
bative version of recent numerical calculations performed
for various lf4 models, namely the anharmonic oscilla-
tor [7] and the Landau-Ginzburg model in the hierarchical
approximation [8]. In these calculations, we were led to in-
troduce large f cutoffs and realized that as l increases, the
field cutoff can be decreased without affecting the accuracy
of the result. The calculations presented here are perturba-
tive series calculated with a large field cutoff. We consider
only lf4 problems; however, the procedure should extend
to any kind of model where large field configurations are
suppressed at positive coupling. This is in agreement with
the general argument [9] linking the large field configura-
tions to the impossibility of applying Lebesgue dominated
convergence to the path integral expression of the pertur-
bative series.
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In order to give an idea about the efficiency of exist-
ing methods, we consider the well-known example of the
ground state energy of the anharmonic oscillator [10]. The
solid lines of Fig. 1 represent the number of significant
digits obtained with perturbation theory for various l. As
the order increases, the approximate lines rotate clockwise
while moving left, forming an approximate envelope. For
a fixed coupling, there is an order of perturbation for which
the error is minimized. On the other hand, the number of
digits obtained with Padé approximants increases with the
order. This is a consequence of Carleman’s theorem which
can be used to show [11] that diagonal sequences of Padé
approximants converge to the ground state energy in an ap-
propriately restricted domain of the complex plane. How-
ever, the convergence rate becomes slower as the coupling
increases. This can be explained [11] from the fact that,
when the coupling increases, a �L�L� approximant tends
to a constant while the energy increases like l1�3. If Padé
approximants are used for the Borel transform instead of
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FIG. 1. Number of correct significant digits obtained with
regular perturbation theory (solid lines) at orders 1, 2, 3, . . . , 15
and with Padé approximants �2�2�, �3�3�, . . . . , �7�7� (dots) for
the anharmonic oscillator, vs log10l . The various orders can be
identified from the explanations in the text. In all the graphs,
the logarithms are in base 10.
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the series, one obtains results qualitatively similar which
are discussed later.

The method that we propose provides a systematic and
controllable improvement to regular perturbation and a bet-
ter convergence than the Padé based methods in the right
hand part of Fig. 1. It can also be used in cases where
the Borel sum has singularities on the positive real axis.
In particle physics, the experimental error bars of preci-
sion measurements are shrinking and higher order terms
of perturbative series are being calculated. Firmly estab-
lished discrepancy or agreement between theory and ex-
periment provides valuable information regarding the laws
of nature at shorter distances. A common practice [12] to
estimate at which order, for a given coupling, we reach the
envelope illustrated in Fig. 1, is to determine when the ra-
tio of successive contributions reaches one. This method
works quite accurately for the three examples considered
below. It seems reasonable to interpret ratios of successive
contributions close to one as a signal that one needs to go
beyond regular perturbative theory. We are getting close to
this situation. For instance, the electroweak corrections to
gm 2 2 give a contribution [13] of 151�4� 3 10211 and in
this calculation, the two-loop effects reduce the one-loop
prediction by 35%. The total electroweak contribution
is about one-third of the discrepancy of 43�16� 3 10210

found by the recent Brookhaven experiment [14]. The
problem is more serious in the case of QCD corrections.
For instance, in the calculation [15] of the hadronic width
of the Z0, the term of order a3

s is more than 60% of the
term of order a2

s and contributes to one part in 1000 to the
total width.

We claim that introducing large field cutoffs leads to
significantly improved perturbative series. An important
reference to understand the general mechanism and to in-
terpret the results presented below is the well studied [4,9]
integral

Z�l� �
Z 1`

2`
df e2�1�2�f22lf4

. (1)

If we expand e2lf4
, the integrand for the order p con-

tribution is e2�1�2�f2
f4p�p! and has its maximum when

f2 � 4p. On the other hand, the truncation of e2lf4
at or-

der p is accurate provided that lf4 ø p. Requiring that
the peak of the integrand for the pth order term is within
the range of values of f for which the pth order trunca-
tion provides an accurate approximation yields the condi-
tion l ø �16p�21. One sees that the range of validity for
l shrinks as one increases the order. We can avoid this
problem by restricting the range of integration in Eq. (1)
to jfj , fmax. We call the truncated integral Z�l, fmax�.
As the order increases, the peak of the integrand moves
across fmax and the contribution is suppressed. It is easy
to show that the coefficients of the modified series satisfy
the bound japj ,

p
2p f

4p
max�p! and the modified series

defines an entire function. However, we are now construct-
ing a perturbative series for a problem which is slightly
141601-2
different than the original one. This procedure is justified
from the fact that the error is controlled by the inequality

jZ�l� 2 Z�l, fmax�j , 2e2lf4
max

Z `

fmax

df e2�1�2�f2

. (2)

We have applied large field cutoffs to the anharmonic
oscillator with a Hamiltonian H � p2�2 1 f2�2 1 lf4.
We use units such that the mass, the frequency, and h̄ are
unity. The method of Ref. [7] was used to obtain a solu-
tion of the time-independent Schrödinger equation for an
arbitrary value of the energy E. The eigenvalues are de-
termined by using the Sturm-Liouville theorem to monitor
the “entrance” of the zeros of the wave function in a region
0 # f # fmax as E increases. If fmax is large enough,
one obtains excellent numerical values of En for n not too
large by requiring that the (n 1 1)th zero occurs exactly
at fmax. This numerical procedure can be converted into
a perturbative expansion order by order in l. By taking
fmax large enough, namely 8, we were able to reproduce
accurately the first 20 terms of the series for the ground
state calculated by Bender and Wu [10] without using dia-
grammatic techniques. We have also applied large field
cutoffs to Dyson’s hierarchical model, an approximation of
lattice scalar field theory where the renormalization group
transformation can be calculated numerically with great
accuracy [8]. We have used a local Lagrangian density of
the Landau-Ginzburg form 2Af2 2 lf4 such that when
l � 0, the mass is unity. The field cutoff appears in the
calculation of the Fourier transform of the local measure
necessary for the numerical procedure. The free parameter
(called c�4 in Ref. [8]) appearing in the kinetic term was
chosen in such a way that a free massless field scales as it
would for a nearest neighbor model in three dimensions.

We now present numerical results concerning the per-
turbative series for Z�l, fmax�, the ground state of the
anharmonic oscillator and the zero-momentum two point
function of the Landau-Ginzburg model. In Fig. 2, we
compare the accuracy of regular perturbation theory with
what is obtained with various field cutoffs. The curves for
the modified series reach an asymptotic value on the left
and drop on the right with the same slope as regular per-
turbation theory but with an intercept on the coupling axis
shifted to the right. In between the two regimes, the curve
reaches a maximum. As the order increases, the maximum
moves up and right making the convergence apparent in
this region. In all cases, the modified models provide an
accuracy that goes far beyond the envelope of regular per-
turbation theory. We have then compared our results with
those obtained with Padé approximants. For the clarity of
the figure, we have limited ourselves to orders 3 and 4 but
similar situations are observed for higher orders. At each
order, we have selected the best approximant for the series
or its Borel sum. These sums are obtained by dividing the
lth coefficient by G�l 1 1 1 b�. We have followed the
procedure of Ref. [6], except that at the end the inverse in-
tegral transform was performed numerically at fixed value
of l. We call this procedure the Padé-Borel method.
141601-2



VOLUME 88, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 8 APRIL 2002
- 2 - 1.5 - 1 - 0.5 0

0

1

2

3

4

5

6

- 1.5 - 1 - 0.5 0

0

1

2

3

4

5

S
IG

N
IF

. D
IG

IT
S

- 1.5 - 1 - 0.5 0 0.5

LOG LAMBDA

- 0.5

0

0.5

1

1.5

2

2.5

3

HIER. MODEL

INTEGRAL

ANH. OSC.

FIG. 2 (color). Number of significant digits obtained with
regular perturbation theory at orders 1, 3, 5, . . . . , 15 (black)
and with fmax � 3 (green), 2.5 (blue), and 2 (red), at orders 1,
3, . . . , 11, as a function of l, for the three quantities described
in the text. Even orders have high cusps and are not displayed.

The values of b were adjusted to get the best possible
result. At order 4, the best approximant is �2�2� in the six
cases considered, but at order 3, the situation is more com-
plicated. In summary, we have used our knowledge of the
exact result to get the best possible result for the methods
to which we compare our results. Random choices of ap-
proximants or of the value of b lead to significantly worse
results. The results are shown in Fig. 3. We have used field
cutoffs of 1.5 and 1 for the integral and 2 and 1.5 for the
two other models. As the field cutoff decreases, the curve
moves right as in Fig. 2. By comparing the three meth-
ods at the same order, we see that beyond a certain value
of l, the method used here outperforms the two methods
based on Padé approximants within a certain range (which
broadens when the coupling increases).

In all the examples considered above, the Borel sum has
no singularity on the positive real axis. One can introduce
such singularities by adding a cubic interaction with an
appropriate coupling. However, for all examples worked
out, this modification can be handled properly with the
proposed method. This is due to the fact that as in the
previous examples, the exponentials converge uniformly in
a compact neighborhood of the origin, and it is legitimate
to interchange the sum and the integral. We report here the
141601-3
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FIG. 3 (color). Number of significant digits obtained with field
cutoffs given in the text, at orders 3 (blue line) and 4 (red line)
compared to the best approximants for the regular series at orders
3 (blue dots) and 4 (red dots) or the best results obtained with
Padé-Borel method at orders 3 (purple) and 4 (green).

case of the double-well potential in quantum mechanics as
discussed in Ref. [16]. In shifted coordinates, the potential
reads �1�2�y2 2 gy3 1 �g2�2�y4. By imposing the van-
ishing of the wave function at y � 610, we were able to
reproduce all the significant digits of the first 10 coeffi-
cients for the ground state given in Table I of Ref. [16].
This series is not Borel summable. We have then con-
structed a modified series by imposing the wave function to
vanish at ymin , 0 and its derivative to vanish at ymax . 0.
If this prescription is used for numerical purposes, one ob-
tains arbitrarily accurate results when g � �1�2ymax� and
ymin negative enough. The numerical results are shown
in Fig. 4 for values of g where the one-instanton contri-
bution accounts for most of the discrepancy obtained with
the regular series. The modified series converge rapidly to
the numerical value obtained with the corresponding ymin
and ymax. It takes into account instanton effects and sig-
nificantly improves the regular perturbative answer. Sig-
nificant improvements have also been obtained for larger
g by decreasing ymax. The striking resemblance among the
three models appearing in Figs. 2 and 3 suggests that, in
general, the corrections due to the field cutoffs can be ex-
pressed as simple one-dimensional integrals. The pertur-
bative expansion of the partition function of an arbitrary
141601-3
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lattice scalar field theory with a large field cutoff can be obtained by writing the truncated integral at each site as
the integral over the whole real axis minus the integral over jfj . fmax. Regrouping the contributions with 0, 1, . . . ,
large field contributions, we obtain the partition function

Z�J� � Ce2l
P

x
�≠�≠J�x��4

e
1�2

P
y,z

J� y�G� y,z�J�z�
µ
1 2 A1

X
y

Z
jfy j.fmax

e2A2�fy2
P

z
G� y,z�Jz�2

1 . . .

∂
, (3)
with A1 � �2pG�0, 0��21�2, A2 � �2G�0, 0��21, G�x, y�
being the two-point function at l � 0 (with no field cut-
off) and all quantities being written in lattice spacing units.
The dots in Eq. (3) are calculable and exponentiate in the
limit of a coarse lattice where the correlations among the
sites are small. In general, Eq. (3) can be interpreted in
terms of Feynman diagrams. A continuum version of this
expression can be obtained by using a dilute-gas approxi-
mation for configurations with one “lump” of large val-
ues. We carried the detail of this calculation in the case
of the anharmonic oscillator using the classical configura-
tion fmaxe2jt2t0j and adapting the arguments of Ref. [17].
The result for the zeroth order correction to the ground
state reads

dE
�0�
0 � 4p21�2f2

max

Z 1`

fmax

df e2f2

. (4)

This prediction fits the numerical data over a wide range of
fmax. We can estimate the optimal value of fmax without
knowing the numerical answer. The left part of the curves
shown in Fig. 2 can be estimated by semiclassical methods
while the right part is given by the next order contribution.
In the case of the anharmonic oscillator, using the classical
configuration mentioned above, we obtain the error at order
n:

jdEo�l�j � dE�o�
o e2�1�2�lf4

max 1 jan11jl
n11. (5)

This approximate formula fits the data very well if fmax

is not too small and allows a good estimate of the value of
the coupling where the accuracy peaks.
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FIG. 4 (color). Number of significant digits for the double well
at orders 3 to 6 for regular perturbation (black) compared to
series obtained with ymin � 23 and ymax � 3 (blue) or ymax �
2.5 (green). As the order increases, the black curves reach
the one-instanton contribution (red) over wider regions to the
left while the two other sets reach the accuracy level obtained
numerically for ymax � 3 (purple) or ymax � 2.5 (brown).
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The semiclassical calculation performed for the anhar-
monic oscillator can be extended to other scalar theories
with exponentially decaying two-point functions, and we
expect an exponential control of the error for these mod-
els. In the case of lattice gauge theory, the integration
over the fields is already reduced to a compact space. In
the literature on lattice perturbation theory (with the ex-
ception of van Baal [18]), one usually replaces

R
dg byR1`

2` dAi
m since in the continuum limit the range becomes

infinite. We claim that this lattice artifact can be used to
obtain a smooth truncation of the perturbative series as in
the scalar case. Different approximations need to be de-
veloped to solve the massless quadratic theory with a field
cutoff. We expect that, as in the case of the double well,
this approach will lead to a quantitative understanding of
the instanton effect.
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