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Universal topological properties of two-dimensional trivalent cellular patterns are found from shell
analysis of soap froth and computer-generated Voronoi diagrams. We introduce a cluster analysis based
on the shell model and find the universal relation ln�a�m2� � A 1 B ln�m2�, with the generalized Aboav
parameter a and second moment of the number of cell edge distribution m2. For the second, third, and
fourth shells of the cluster, A and B are the same for all samples. Furthermore, A is increasing with
shell number while B is a universal number, 20.90. For the first shell, the slope B is the same for soap
froths, but slightly different from Voronoi graphs.
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Two-dimensional cellular structure constitutes a large
class of patterns with important technological and scientific
applications. Soap froth, polycrystalline grain mosaics,
and biological tissues are natural examples of random,
space-filling cellular networks [1]. Since cellular struc-
tures exist on scales ranging from microscopic to geologi-
cal, much work has been devoted to the search for universal
geometrical characteristics. Despite the enormous differ-
ence in length scales and different physical forces driving
the evolution of the networks, there exist certain univer-
sal topological laws governing their similarity. These laws
leave aside metrical properties (e.g., sizes of cells) and ad-
dress the probability distribution Pn of the number n of
edges of a given cell, or correlations between the numbers
of edges of adjacent cells. One of the best-obeyed empiri-
cal laws is the Aboav-Weaire law [2,3] which states that
on average the sum [M�n�n] of the number of sides of the
cells immediately adjacent to an n-sided cell is linear in n:

M�n�n � �6 2 a�n 1 �6a 1 m2� , (1)

with the second moment m2 �
P`

n�3 Pn�n 2 6�2 being
commonly used as a measure of the disorder. The notation
M�n� denotes the average number of edges of the adjacent
cells to a given n-sided cell. The Aboav parameter a is a
measure of nearest neighbor correlation and for soap froth
a is approximately 1.

There have been several important works published after
the recognition of Aboav-Weaire law. Godreche et al. [4]
have used planar graph theory in the context of counting
planar Feynman diagrams with a cubic interaction to give
an analytic expression of the Aboav-Weaire law in addition
to the calculation of Pn. However, these exact results are
based on a particular model and cannot explain the vast
diversity of natural cellular patterns with different Aboav
parameters and second moments. Delannay and Le Caer
[5,6] have studied the stationary topological properties of
2D cellular structures generated by random fragmentation
in computer simulations, with very different a and m2 that
falls on a universal curve that is valid for many systems,
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both natural and computer generated [5–8]. There are
also many papers published on the two-cell correlation
using maximum-entropy argument [9], but none of these
theoretical efforts succeed in explaining the universality
shown in the curve of a�m2 vs m2 (Fig. 2 of Ref. [5]).

We have studied soap froth as a typical two-dimensional
cellular system under many different conditions such as
temperature ramping [10], special sample preparation for
particular initial configurations such as hexagonal bubble
crystals [11], and evolution of the patterns under constant
temperature environment [12–15]. These experimental
studies have been supplemented by detailed theoretical
analysis using the shell model [16–19] and numerical
simulations [20,21]. The structural characterization of the
soap froth in the shell model can be applied to all two-
dimensional trivalent cellular patterns. In soap froth we
have shown certain universal features such as the general-
ized Aboav-Wearie law [16] for the average number
M�i, n� of edges of cells in the ith shell of the central
cell with n sides. We also found that the number of cells
K�i, n� in the ith shell is linear in i with slope related to
the Aboav parameter [17]. In this Letter, we study the
generalized Aboav-Weaire law, which relates the correla-
tion between the ith shell neighbors with the disorder of
the i-shell perimeter. We find new universal features for
shells beyond the first.

Inspired by ideas from the renormalization group, we
consider the generalization of the Aboav-Weaire law based
on the shell model analysis [17,18]. We propose a gener-
alized Aboav-Weaire law in the form

M�N�N � ��N� 2 ai�N 1 bi . (2)

Here N is the number of inner perimeter edges in the ith
shell, �N� is the average value of inner perimeter edges of
all the ith shell clusters, and M�N� is the mean number
of edges of the cells in the ith shell with inner perimeter
edges N . This proposed equation is found to be obeyed by
all the systems that we have analyzed, i.e., soap froths and
Voronoi patterns from a random set of points. However,
© 2002 The American Physical Society 138302-1
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for different systems, the Aboav parameters ai and bi are
different, and so is the second moment m2 � �N2� 2 �N�2.

In using the shell model, we must systematically handle
the defects. In Fig. 1, we illustrate shells around a central
bubble in an experimental soap froth pattern. Starting from
a central bubble with n edges, the first shell consists of all
its n neighboring bubbles. In Fig. 1, the central bubble is
labeled 0, and it is a hexagon. There is no defect in the
first shell. After the first shell, where bubbles are labeled 1
in Fig. 1, we define the second shell as the set of bubbles
which have at least one edge being the outer perimeter
formed from the bubbles in the first shell. The bubbles in
the second shell are labeled by 2 in Fig. 1. We then define
the outer perimeter of the second shell as the perimeter
formed by those edges which meet new bubbles that are
not labeled 0 or 1. Now, recursively, we can define the
third shell as the set of bubbles that are not labeled by 0,
1, or 2, and that share the edges in the outer perimeter of
the second shell. We see in Fig. 1 that there are defects,
which are bubbles with bracketed labels. Nondefective
bubbles in the ith shell are those that have neighbors in the
neighboring shells, such as bubbles in the i 1 1 shell and
the i 2 1 shell. However, a defect in the ith shell does not
have this feature, as can be seen in Fig. 1 for those bubbles
with a bracketed shell number.

We have reported the details of the experimental works
elsewhere [10,11]. Here we summarize our data on real
soap froth for two samples, called S1 and S2. Our experi-
ment was performed in a 26.7 3 36.8 cm chamber con-
sisting of two 1.6 cm thick rectangular Plexiglas plates
separated by a 0.16 cm thick spacer. More than 20 000
bubbles of 1 mm size were pumped into the chamber ini-
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FIG. 1. Experimental soap froth data showing the shell struc-
ture in two-dimensional trivalent cellular pattern defined around
a central cell, which is a hexagon labeled by 0. The thick lines
indicate the perimeters of the shells. Cells with bracketed num-
bers are defects.

tially so as to create a froth sample. Sample set S1 refers
to the set generated by an initially disordered state, while
sample set S2 refers to the ordered state which we called
the bubble crystal [11]. The initial froth was drained to
remove excess fluid. For the sample set S2, defects were
produced during the drainage, which led to the coarsening
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FIG. 2. Data collapse of ln�a�m2� vs ln�m2� for two soap froth samples S1 (squares) and S2 (circles) and the Voronoi networks
(crosses). The solid, dashed, and dotted lines indicate the linear fits for the three sets of data, respectively.
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TABLE I. Results of the linear fit: ln�a�m2� � A 1 B ln�m2�.

Shell Sample A Error (A) B Error (B)

S1 10.15 0.03 21.20 l0.1
First S2 20.04 0.05 21.25 0.06

Voronoi 10.01 0.01 21.70 0.04

S1 12.53 0.01 20.950 0.007
Second S2 12.52 0.02 20.947 0.006

Voronoi 12.53 0.002 20.955 0.001

S1 13.11 0.03 20.912 0.01
Third S2 13.09 0.05 20.913 0.01

Voronoi 13.15 0.006 20.926 0.002

S1 13.46 0.06 20.894 0.01
Fourth S2 13.43 0.06 20.896 0.01

Voronoi 13.49 0.01 20.905 0.003

of the froth. A high resolution charge-coupled device
camera (1037 3 1344 pixels) was used to capture images
of the froth every 10 min during its evolution.

The theoretical samples that we have investigated are
Voronoi patterns constructed from sets of points randomly
distributed in the plane. Different control levels on the
minimal distance between any two points are used to
generate different Voronoi cellular patterns. On the unit
square, N points are distributed randomly subjected to
the constraint that distance between any pair of points is
greater than d, with 0 # d , dmax � 1�

p
N . We sequen-

tially place a point randomly on the unit square, and cal-
culate the minimum distance di between this point i and
all other existing points on the square. If di . d, then we
accept this point, otherwise we reject it and generate a
new point randomly. This process continues till we get N
points on the square. We have generated 17 random point
sets with N � 10 000 and d from 0 to 0.8dmax in steps
of 0.05dmax. The Voronoi diagrams are then constructed
based on these 17 point sets. The cells in the Voronoi
diagrams used in the actual analysis are about 9600, as
we exclude the cells in the boundary.

We find a universal relation between m2 and a�m2 in
each sample for analysis on the second, third, and fourth
shells. This is shown in Fig. 2, where we have plotted the
data for each shell, and all three samples produce data col-
lapse on a straight line. The intercept A and slope B of the
straight line are shown in Table I. From this table we see
that the data collapse for the first shell is not very good, as
can be seen in the difference in the value of the slope B.
However, for the second, third, and fourth shells there is
a universal relation for all samples and all shells that the
value of the slope B is 20.9, while the intercept A is shell
dependent, but sample independent. Though both the in-
tercept A and slope B are increasing with shell number, the
difference between soap and Voronoi is negligible, and the
dependence of B on shell is small. The explanation of the
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topological properties of the two-dimensional trivalent pat-
tern should thus be mainly mathematical in nature, though
a small deviation in the first shell should be physical in
origin. Effects due to a different physical or mathematical
process generating the cellular pattern are very local, as
the universality on the generalized Aboav parameters and
fluctuation of the perimeters of giant clusters always pre-
vails in higher shells. As our experimental data are limited,
the statistics for shells higher than the fourth became poor,
and we have not included it in our analysis. Nevertheless,
we conjecture that the same universal properties hold for
higher shells.
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