VOLUME 88, NUMBER 13

PHYSICAL REVIEW LETTERS

1 ApriL 2002

Experimental and Numerical Studies of Noise-Induced Coherent Patterns
in a Subexcitable System

L.Q. Zhou, X. Jia, and Q. Ouyang*

Department of Physics, Mesoscopic Physics Laboratory, Peking University, Beijing 100871, People’s Republic of China
(Received 27 September 2001; published 19 March 2002)

A subexcitable medium of Belousov-Zhabotinsky (BZ) reaction subjected to external Gaussian white
noise is studied in experiments and numerical simulations. We observe that at an optimal level of noise
the wave sources of excited traveling waves become synchronous, as though there exists a long distance
spatial correlation. The synchronous behavior fades if the noise level becomes larger or smaller. Nu-
merical simulations confirm the experimental findings, and point out that the best synchronous behavior
takes place when the signal-to-noise ratio of waves becomes largest.
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It is well established that noise can play ordering roles
in the dynamics of nonequilibrium systems. Noise in-
duced transition [1] and stochastic resonance (SR) [2] are
well-known examples of the beneficial effect of fluctua-
tions in nonlinear dynamical systems. In recent years, the
phenomenon of SR is a subject of intense investigations
in light of its useful application in physical, technological,
and biomedical contexts, because SR points to a possible
novel way of enhancing the detection of weak signals by
adding an optimized amount of noise in the measured sys-
tem. The original model of SR includes a symmetrical
bistable system, additive external Gaussian white noise,
and a weak input periodic signal. Later, a quite wide va-
riety of systems are used to study SR, such as monostable
system [3], multistable system [4], excitable system [5],
chemical reactions [6], and neural network [7]. Noise can
be colored [8] or multiplicative [9], the input signal can be
aperiodic [10], and SR can even be shown to occur without
an external periodic drive [11-15].

Recently, the effect of noise on spatial extended sys-
tems has received lots of attention. Jung and Mayer-Kress
[16] first proposed the concept of spatiotemporal stochas-
tic resonance, showing a sharp peak of synchronization of
spatiotemporal patterns in an excitable medium at a finite,
well-defined noise level. Since then, the study of inter-
actions between noise and spatiotemporal patterns has be-
come an attractive subject. Noise can enhance propagation
in arrays of coupled bistable oscillators [17]. In subex-
citable media, noise can induce traveling waves [18], drive
avalanche behavior [19], and sustain pulsating patterns and
global oscillations [20].

In this Letter, we report our study on the influences of
external Gaussian white electric noise parametrically on a
subexcitable medium of Belousov-Zhabotinsky (BZ) reac-
tion. Our experimental results show an interesting phe-
nomenon of spatiotemporal coherent patterns. We observe
that noise continuously causes traveling waves emerging
randomly from the boundary of the reaction medium.
Moreover, at an optimal level of the noise, these waves are
almost simultaneously excited and travel forward together.
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That is, noise of an optimal level causes synchronization
of wave sources.

Our experiments are carried out with a quasi-two-dimen-
sional spatial open reactor, on which an external electric
field can be imposed. Experimental setup and chemical
compositions are the same as those described in Ref. [21],
except that eight platinum electrodes are added in the re-
actor. These electrodes are arranged in a symmetrical
way in the two compartments which sandwich the reac-
tion medium, a porous glass disk. As shown in Fig. 1,
in each side of the reaction medium, four electrodes are
curved, without connection, to form a cycle whose diam-
eter is 25 mm, larger than that of the reaction medium
(18 mm, the gray part in Fig. 1). The distance between
planes of the electrodes and the reaction medium is about
3 mm. Through the electrodes, an electric field parallel to
the surface of the reaction medium can be added. Using a
signal generator of white noise (UZ-3A type), we subject
the reaction medium to an electric field of Gaussian white
noise, with zero mean and frequency density distribution
of 20 Hz to 20 KHz. Notice that the applied field E(r, 1),

+ Q :
FIG. 1. The side view of the electrode arrangement. In each
side of reaction medium, four electrodes (lines) forming a cycle
without connection are about 3 mm away from the plane of the
medium (the gray circle in the center). One end of each electrode
is extended out of the open reactor and is connected with the

output of the signal generator. The left four are with the anode,
and the right four with the cathode.
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although stochastic in time, has a space-fixed orientation
determined by the electrode geometry.

The effects of the electrical noise on the subexcitable
medium are shown in Fig. 2. The concentrations of com-
ponents are chosen to maintain the system slightly below
the excitability threshold. They are the following: [CH;-
(COOH),]» = 0.4 M; [KBr]4s = 0.03 M; [NaBrOs]a) =
0.4 M; [Ferroin]g = 0.5mM; [H,SO4]z = 0.18 M. All
the concentrations of components are kept fixed, and the
noise level is varied from zero in Fig. 2(a), correspond-
ing to the noise-free autonomous system, to the maximum
level D = 2.9 V in Fig. 2(d), which is determined by the
capacity limit of the aqueous solutions under the external
electrical field.

Figure 2(a) shows that, under the experimental condi-
tions, the noise-free system cannot support wave propaga-
tion. When a wave front emerges on the boundary due
to the asymmetry of two areas of the reaction medium
[21], it cannot propagate into the inner area of the reac-
tion medium. The situation changes when external elec-
trical noise is imposed onto the system. In this case some
small wave fronts grow up randomly from the boundary
and traveling forward into the inner area of the reaction
medium. Figures 2(b)—2(d) show the propagation of these
wave fronts under a different level of noise. At a low
noise level [Fig. 2(b)], several traveling waves with differ-
ent propagating directions are excited simultaneously from
the boundary of the reaction medium. As time elapses,
these waves travel forward, meet and annihilate one an-
other, and disappear. Then a new group of traveling waves
will be excited, repeating the same process. At a high noise
level, one wave source dominates the whole system so that
regular patterns form, as shown in Figs. 2(c) and 2(d). The
wave frequency also increases with the amplitude of noise.

If the noise is shut off, all the wave fronts will slow down,
break, and finally disappear, the system comes back to the
state of Fig. 2(a). Thus a certain level of external noise is
a necessary condition for traveling wave propagation and
regular pattern formation.

Figure 3 shows the evolution of traveling waves excited
by noise at noise level D = 1.4 V, corresponding to
Fig. 2(b). A certain number of small wave fronts are
excited simultaneously in the boundary of the reactor
medium [six wave fronts excited in Fig. 3(a)]. All of them
intend to propagate forward. However, some of them
enlarge while others shrink [three enlarging in Fig. 3(b)].
The enlarging wave fronts meet one another and disappear
in the central part of the system [in Fig. 3(c)]. Then
new and different small wave fronts are excited randomly
again from the boundary [in Fig. 3(d)], repeating the same
process. Since the system has a characteristic periodicity,
we define a quantity 7 and study its periodical variation
at a different level of noise. For one image at a time ¢, n
is defined as the following:

n = [>(Ai — AN, (1)

where A = >, A;/N, A, is the intensity of any pixel point
i in the circular image, N is the total number of pixel
points, and the summation includes all the pixel points in
the image. Thus the function 7 is the standard deviation
of one image from its mean brightness. For the noise-free
image, the quantity 1 should be equal to zero. If there
exists some little wave fronts, the quantity 7 has small
positive value.

Figure 4 shows the variations of 7 as functions of time
t, taken at different noise levels. One observes that all

FIG. 2. The effects of noise on subexcitable medium. (a) The
noise-free reaction medium (gray area) shows no wave propaga-
tions in the inner area of the system; (b)—(d) coherent patterns
are shown at different noise levels D = 1.4, 2.6, and 2.9 V. The
image in (a) has a size of 18.2 X 15.0 mm? pixels and shows
the whole observation window. The others are cut from the cen-
ter area of the reaction medium in circles whose diameters are
14.0 mm.
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FIG. 3. The synchronous excitations induced by noise with the
noise level D = 1.4 V. The sequential times, respectively, are
0's; 140 s; 260 s; 480 s. (a) Several randomly excited wave
fronts emerge synchronously from the boundary of the reaction
medium; (b) some of them enlarge when traveling forward;
(c) when the waves meet one another, they disappear; (d) new
and different wave fronts are excited again, repeating the same
process.
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FIG. 4. The variations of n as functions of time ¢ with differ-
ent noise levels.

curves except the last one vary more or less periodically
as a function of time, especially in the case of the noise
level D = 1.4 V [Fig. 4(b)], which seems to be quite good
periodic and has almost equal amplitudes. Others cor-
responding to a lower [Fig. 4(a)] or a higher noise level
[Fig. 4(c)]. They contain a certain degree of periodicity,
but the amplitudes randomly fluctuate. The periodic varia-
tion of the function 7(z), on one hand, means that noise
periodically excites wave fronts; on the other hand, it rep-
resents phase synchronization of the several wave sources
on the boundary of the reaction medium. In other words,
at an optimized noise level, the system synchronizes or
organizes into a coherent pattern. This behavior is a typi-
cal stochastic resonance phenomenon in a spatial distrib-
uted system.

For an even strong noise (see the fourth plot of D =
2.6 V in Fig. 4), the function 7(z) has quite small ampli-
tude and seems quite random. This is because the period
of excited wave fronts becomes short (7 = 400 s at D =
1.7 V), the next wave front emerges before the former
disappears. Therefore, several wave fronts can coexist in
the whole reaction medium [see Fig. 2(c)]. Furthermore,
with strong noise the wave fronts are not excited randomly
from the boundary; instead one wave source dominates
the whole system. As a result, a spatially regular pattern
forms and remains almost unvaried in the whole reac-
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tion medium, and the phase synchronization is completely
destroyed.

To understand why the most perfect synchronous phe-
nomenon exists at an optimal noise level, we use a two-
variable Oregonator model to simulate the experimental
observations. In our system, the external electric noise can
be simply considered as a spatially uniform electric field
E(t), which varies in time ¢ with the form of Gaussian
noise. The model is the following:

0 1 -
—u=—<bt_l/t2_fvu q>+DL¢V2u+E(t)VM’
Jat e u-+tgqg
(2
Jv 2
— =u—v + D,Vv + E(t)Vv, 3)

at

where u and v represent, respectively, the concentration
of HBrO; and the catalyst; D, and D, are diffusion coef-
ficients; and f, g, and e are parameters related to the BZ
kinetics, which are chosen such that the system is in a
subexcitable regime, so that the system does not support
sustained wave propagation in the absence of noise. E(t)
satisfies (E(z)) = 0 and (E(1)E(t")) = D;6(t — t'), a
typical temporally varied Gaussian white noise. The ef-
fect of electric field is convective-like, as discussed in
Ref. [22]. Equations (2) and (3) are numerically integrated
using a Euler method with a time step of 1 X 1072 time
unit and a grid size of 0.15 space unit in an array of
350 X 100 points. Zero flux boundary conditions are
considered.

The simulations have been done in two steps: First,
at the left boundary we set a part of the grid of 3 X 90
points in the excited state of reaction, which serves as the
wave source. Without noise, waves generated in the small
area recede quickly when they travel into the subexcitable
area. However, as noise is added, waves can propagate in
the subexcitable medium, traveling one by one from the
source in the left. As Pikovski introduced [5], we use the
standard deviation of the temporal interval of the waves as
a noise-signal ratio R;:

_ T =Ty

(T) ’
where (T) = limN_,oo% Zﬁvzl T;, N denotes the number of
waves, and T; is the time between the ith and (i + 1)th
wave front. Figure 5(a) shows the noise-signal ratio R, as
a function of the noise strength D;. One observes that, at
an optimal noise level, the waves sent from the source have
the most perfect periodical behavior.

In the next step, in order to observe the synchronization,
two wave sources, each having 3 X 90 grid points, are set
at the left and right boundary of the grid, respectively, so
that two counterpropagating waves can be sent out. The
traveling waves meet in the middle of the system and an-
nihilate. The range of noise level is chosen such that the
time intervals of traveling waves are large, so that there is

R, “4)
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FIG. 5. The noise-signal ratios as functions of noise levels
calculated in the simulations. (a) R; as a function of Dy in the
case of one wave source; (b) R, as a function of Dy in the case
of two wave sources. The inset in (b) shows 7 as a function
of time in the second case. The parameters of simulation are
D, =1.0,D, = 0.6, f = 2435, ¢ = 0.002, ¢ = 0.1.

a duration after each wave annihilation while no waves are
observed in the system [see the inset of Fig. 5(b)]. We pick
the center part of the grid of 160 X 60 points to evaluate
the standard deviation 7(¢), defined as in Eq. (1). In this
case, A; represents the value of each point in the selected
grid. The functions of n(¢) vary periodically. We no-
tice that when the two counter—traveling waves meet each
other, the value of 1 goes up higher, then descends fast to
zero, corresponding to a homogeneous state [as shown the
insert of Fig. 5(b)]. So that we can get the intervals 7; be-
tween two encounters in succession, and obtain a standard
deviation R using Eq. (4). Figure 5(b) demonstrates the
relation between Ry and D;. Compared with the relation
R,(Dy) in Fig. 5(a), Ry(Dy) is also nonmonotonous, and it
is interesting to find that the minimums of the two relations
locate at the almost same positions, i.e., near Dy = 22.
This simulation result means that at an optimal noise level,
the excited waves with the most perfect periodicity show
the best synchronous behavior.

In conclusion, we observe both in the experiments and in
the numerical simulation that noise can induce and sustain
wave propagations in a subexcitable medium, and the time
interval between waves is more or less regular. Moreover,
both investigations reveal that at an optimal noise level,
wave fronts from different sources show a synchronous be-
havior. In numerical simulations, we know that the value
of the optimal noise level for excited waves with the most
perfect periodicity is coincident with the value for the best
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synchronous behavior. This phenomenon leads us to pro-
pose that, at a same optimal noise level, the wave fronts
excited from different sources show both the most regular
and the best synchronous behavior, and the latter probably
due to the long distance correlation induced by interac-
tion between the external electric field and the nonlinear
system.
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