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Synchronization of Noise-Induced Bursts in Noncoupled Sensory Neurons
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We report experimental observation of phase synchronization in an array of nonidentical noncoupled
noisy neuronal oscillators, due to stimulation with external noise. The synchronization derives from a
noise-induced qualitative change in the firing pattern of single neurons, which changes from a quasiperi-
odic to a bursting mode. We show that at a certain noise intensity the onsets of bursts in different
neurons become synchronized, even though the number of spikes inside the bursts may vary for different
neurons. We demonstrate this effect both experimentally for the electroreceptor afferents of paddlefish,
and numerically for a canonical phase model, and characterize it in terms of stochastic synchronization.
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Arrays of oscillators are ubiquitous in biological sys-
tems, e.g., in sensory nervous systems [1]. Neuronal os-
cillators commonly undergo “bursting” discharge patterns
[2]. Synchronization of different oscillators, i.e., adjust-
ment of their characteristic time scales to a single rhythm,
is a fundamental nonlinear phenomenon in oscillator ar-
rays [3]. Bursting and synchronization are both affected
by noise, present in any natural system [4]. Bursting
induced by noise has been simulated numerically [5,6].
Bursts in different neurons can readily be synchronized if
the neurons are coupled, e.g., via synapses, as analyzed
theoretically [2,7] and experimentally [8]. But what if the
oscillators in an array are not coupled? Noise can play a
positive role in some cases, enhancing [9] or even inducing
synchronization, as can occur when a population of identi-
cal noncoupled oscillators is subjected to a common noisy
field, studied theoretically by Pikovsky [10] and recently
in [11]. However, in many cases the oscillators of an ar-
ray are not identical, and instead have widely distributed
natural frequencies. Also, there could be statistically in-
dependent internal noises present in the different oscilla-
tors of an array, tending to prevent synchronization. Under
these unfavorable conditions, how can synchronization oc-
cur among noncoupled nonidentical noisy oscillators?

In this Letter, we show that synchronization of noniden-
tical neuronal oscillators which are not coupled can still
be achieved via a specific mechanism of noise-induced
slow dynamics. Experimental results are presented from
the electrosensory system of paddlefish, using external
noise stimulation. We show that synchronization between
different electroreceptors occurs due to a noise-induced
transition in the electroreceptor firing pattern, changing
qualitatively from a quasiperiodic mode to a bursting mode
in which rapid firing alternates with periods of quiescence.
Synchronization of bursts in different receptors occurs be-
cause the receptors exhibit common slow dynamics, when
driven by noise, even though they may have quite differ-
ent mean firing rates. To our knowledge, this is the first
experimental demonstration of noise-induced synchroniza-
tion among pairs of noncoupled sensory neurons.
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Electrosense in paddlefish (Polyodon spathula) rep-
resents a “passive radar” system, optimized by nature
during 65 3 106 years of evolution. Thousands of electro-
receptors are organized into linear arrays on the elongated
rostrum, which acts as an antenna for detecting electrical
signals from plankton prey [12,13]. A remarkable property
of electroreceptors is that they are spontaneously active
[14] and undergo biperiodic noisy self-sustained oscilla-
tions [15]. We can therefore hypothesize that synchroniza-
tion among electroreceptors due to the (external) electrical
signals from planktonic prey may be an important sensory
mechanism for the detection and location of prey. An
“electroreceptor” consists of a cluster of 3–35 skin pores,
each leading into a short canal [16], which ends in a
sensory epithelium containing �400 hair cells. All the
hair cells of a cluster synaptically excite the terminals of
a few primary afferents (sensory neurons), whose axons
project to the brain. A given afferent shows a nearly con-
stant mean frequency of background firing, but the mean
rate in different afferents can vary over a wide range of
30–80 Hz. The instantaneous firing frequency of an affer-
ent can vary threefold, with coefficients of variation (CV)
of interspike intervals ranging from 0.1 to 0.3 in different
afferents. There is no morphological or physiological evi-
dence for coupling between receptors [14,16], which gives
us a well-defined system for studying correlations between
different sensory neurons due solely to external stimuli.

We simultaneously recorded the single-unit spikes from
pairs of electroreceptor afferents in vivo, using metal
microelectrodes (see [12,15] for experimental details).
One receptive field was on the left side of the rostrum, the
other on the right side. Their locations on opposite sides
of the rostrum, which are innervated by separate nerves,
guaranteed that the pairs of afferent neurons were not
coupled [16]. We used uniform-field stimulation of all the
electroreceptors: stimulus currents were passed between
15 3 5 cm silver plate electrodes at the ends of the
experimental chamber. A computer-generated zero-mean
Ornstein-Uhlenbeck (OU) Gaussian noise was used. The
correlation time was set to be 0.002 sec, corresponding to
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a 500 Hz bandwidth, much smaller than the mean firing
period of afferents (0.013–0.033 sec), in order to study
the general response properties of electroreceptors [17].
We generated a sequence of 30 segments of OU noise
with incrementing intensities. Each noise segment was
180 sec long, and segments were separated by 5 sec of
no stimulus. Approximately 104 afferent spikes occurred
during each segment [18]. For comparison, we also used
noise from a General Radio model 1390B generator,
which was low-pass filtered by an eight-pole Bessel filter
set to 50 Hz. This same noise was used in a previous
study on electrosensory stochastic resonance [13]; its
probability density was Gaussian, with a broad peak at
20 Hz in the power spectrum (see Fig. 1d in [13]). Data
were from 9 pairs of afferents, from 4 animals.

Figure 1 shows representative data from two different
afferent pairs, from different animals, using two different
types of noise stimulation (panels A, B). In the absence of
stimulation, the individual spikes of the afferent pairs were
not correlated or synchronized. For instance, in Fig. 1B,
afferent No. 1 fired slower than afferent No. 2, with mean
firing rates of 33.4 and 45.1 Hz, respectively. Stimulation
with weak noise (,2.5 mV�cm rms) did not change the
firing pattern, but rather led to the well-known effect of
widening the power spectrum peak at the mean frequency
of the afferent [15]. When noise of a certain intensity
(.2.5 mV�cm rms) was applied, the firing patterns of the
afferents changed drastically such that both afferents of a
pair produced bursts [18]. For larger noise (.5 6 mV�cm
rms), each burst started almost simultaneously in the two
neurons of a pair, after stimulation (noise) was switched
on, even though the number of spikes inside a burst was
different for each neuron. The small constant time delay
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FIG. 1. Examples of simultaneous recordings of spike trains
from pairs of electroreceptor afferents, for two different types of
noise stimulation. Spikes are marked by vertical lines. A: stimu-
lation with noise from a vacuum tube generator, of 20 mV�cm
rms amplitude; B: stimulation with computer-generated OU
noise of 16.8 mV�cm rms amplitude. The onset of stimulation
is marked by the arrows. C and D: instantaneous firing rate dur-
ing spontaneous activity (C) and noise-induced parabolic burst-
ing (D).
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between the burst onsets in the two neurons was probably
due to different lengths of their axons. The interspike
intervals within a burst decreased towards the center of
the burst (Fig. 1D); such a pattern is termed “parabolic
bursting” [19].

The 500 Hz bandwidth of the OU noise was signifi-
cantly larger than any of the characteristic frequencies of
the receptor system, and therefore burst initiation cannot be
explained simply by slow changes in the stimulus. Indeed,
bursts could also be induced by other types of stimuli (sine
wave, impulselike, etc.), as well as by noise having differ-
ent statistical properties, as in Fig. 1A. Similar results were
also obtained using OU noise which was high-pass filtered
at 20 Hz to remove the low frequencies.

As the noise intensity was increased from zero, the
distribution of interspike intervals (Fig. 2A) changed
smoothly from unimodal (curve 1, without stimulation)
to a bimodal distribution during bursting, while the
frequency of bursts increased progressively. The two
peaks of the bimodal distribution correspond to the slow
inter- and fast intraburst dynamics, resembling results
from other noise-induced transitions [20]. The change
from uni- to bimodal was quantitated by plotting the
mean interburst interval �tb� as a function of increasing
noise intensity (Fig. 2B), which showed exponential
falloff. The experimental results were well fitted by the
Arrhenius law, �tb� � n exp�D�s2� with n � 0.23 sec
and D � 7.1 �mV�cm�2; s is the noise rms amplitude.
This implies that burst generation is excitable and has a
well-defined threshold [21], 2.7 mV�cm in this example,
comparable to threshold estimates from behavioral experi-
ments (0.5 1 mV�cm; [13]). In sum, the noise-induced
transition to bursting involves a new characteristic slow
time scale, reflected in the quiescent epochs between
bursts. The slow time scale is distinct and well separated
from the dynamics of fast spiking during bursts. Further
experiments are needed to define the cellular mechanisms
of the bursting; it probably arises from slow ionic currents
in the afferent terminals, as in thermoreceptors [6].

To characterize the coincidence of bursts in pairs of neu-
rons, we used the phase f�t� of burst trains in each neuron,
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FIG. 2. A: Probability density of interspike intervals in
the absence of noise (curve 1), or during stimulation with
16.8 mV�cm rms OU noise (curve 2). B: Mean interburst
interval versus the rms amplitude of the stimulus OU noise
(circles), and its fit by the Arrhenius law (solid line).
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which increases by 2p every time a burst occurs, and inter-
polates linearly between two sequential bursts. When sto-
chastic synchronization occurs, constant segments of the
phase difference Df�t� � f1�t� 2 f2�t� (phase locking)
are interrupted by abrupt 2p changes (phase slips) [4]. The
probability density of the phase difference, P�Df�, char-
acterizes the degree of synchronization: a well-expressed
peak in P�Df� indicates synchronization, while a uni-
form distribution indicates the absence of synchronization.
For small noise (Fig. 3A), the bursts in the two affer-
ents of a pair have different frequencies (see also Fig. 4B)
and are not synchronized, indicated by a monotonic in-
crease of the phase difference, and the uniform distribution
of P�Df�. In contrast, during burst synchronization in-
duced by strong noise, the phases of the two afferents are
locked for epochs lasting several seconds (inset, Fig. 3B),
and there is a sharp peak in the probability density of
the phase difference (Fig. 3B). This can be further quan-
tified by calculating the synchronization index as g2 �
�cosDf�2 1 �sinDf�2, where the brackets denote the av-
erage over time [22]. The synchronization index increases
with the noise intensity, indicating more complete noise-
induced burst synchronization (Fig. 4A). This occurs be-
cause of frequency locking, in which the mean interburst
intervals of the two afferents converge (Fig. 4B). This con-
vergence implies that the two electroreceptors share simi-
lar slow dynamics. Since we were able to synchronize
all the neuron pairs studied, it appears that all the electro-
receptors have similar slow dynamics. Thus the transi-
tion to synchronization occurs in two steps: (i) common
noise induces bursts in neurons, but since their burst thresh-
olds may be slightly different the frequencies of bursts are
different and thus the burst onsets are not synchronized;
(ii) further increase of common noise leads to entrainment
of slow dynamics in the two neurons and thus to burst
synchronization.

We can narrow the choice of a model for our data based
on a crucial property of the observed bursting, namely
its parabolic character (see Fig. 1D). Parabolic bursting
can be described in the most general way by a canoni-
cal model proposed by Ermentrout and Kopell [19]. The
canonical model involves two subsystems, fast and slow.
The fast subsystem describes the fast dynamics of a vari-
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FIG. 3. Phase differences of burst trains in a pair of afferents
(insets), and their probability densities. A: weak OU noise of
3 mV�cm rms amplitude. B: OU noise of 16.8 mV�cm rms
amplitude.
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able u which refers to a phase along a limit cycle: �u �
�1 2 cosu� 1 �1 1 cosu�r. The fast subsystem operates
in the vicinity of saddle-node bifurcation which is con-
trolled by the parameter r: for r . 0 the “neuron” fires
periodically with the angular frequency 2

p
r, while for

r , 0 the fast system is excitable, with two equilibria
u6 � 6 cos21��1 1 r���1 2 r��, unstable and stable, re-
spectively [2]. The slow subsystem mimics the contribu-
tion of slow ionic currents, and operates on a much slower
time scale, modulating the parameter r of the fast subsys-
tem [23]. In our model, external broadband noise excites
the slow subsystem, which in turn modulates the parame-
ter r of the fast subsystem, producing parabolic bursts:

�u � �1 2 cosu� 1 �1 1 cosu�r cosc 1 w�t� ,

ts
�c � 1 2 e sinc 1 s�t� ,

(1)

where c represents the excitable slow subsystem, ts ¿ 1
is a scaling factor, w�t� is Gaussian white noise of in-
tensity W , �w�t�w�t 1 t�� � 2Wd�t�, mimicking inter-
nal fluctuations, and s�t� is the external stimulus [24]. The
parameter e determines the excitability of the slow sub-
system. In the absence of any stimulus, [s�t� � 0] for
e , 1, the slow subsystem resides at a stable equilib-
rium cs � sin21�1�e�. The unstable equilibrium, cu �
p 2 sin21�1�e�, represents a threshold which should be
overcome to induce a single rotation and thus a burst in the
fast subsystem. The slow dynamics of c can also be in-
terpreted as Brownian motion in a tilted periodic potential
U�c� � 2c 2 e cosc. For the case of a white Gaussian
noise stimulus, the escape rate from the potential well can
be calculated analytically and follows the Arrhenius law
[4]. We note that direct application to the fast subsystem
of a rapid stimulus, fluctuating on a time scale compara-
ble to the oscillation period of the fast subsystem, will not
induce the long quiescent intervals we observe between
bursts.

If we now consider two noncoupled systems described
by Eqs. (1), with significantly different parameters r,
slightly different parameters e, and the same scaling factor
ts, along with statistically independent internal noises
w�t�, but receiving common external noisy input s�t�, then
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FIG. 4. The synchronization index g (A) and the mean inter-
burst interval �tb� (B) as a function of external OU noise rms
amplitude, for a pair of simultaneously recorded electroreceptor
afferents.
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FIG. 5. Numerical simulation of two oscillators described by
Eq. (1). The “membrane potentials” u1,2 mod2p are plotted
in time (first two traces), along with the Gaussian white noise
stimulus s�t� of intensity 0.05 (third trace), which started at
the arrow. Subscripts indicate oscillator No. 1 (upper trace)
and No. 2 (lower trace). Parameter r of the fast subsystem
was 1.0 and 2.0 for oscillators No. 1 and No. 2, respectively.
Other parameters were e1 � 1.1, e2 � 1.12, tc � 20, and
W � 0.005.

synchronization of bursts is observed. This is illustrated
in Fig. 5, where the frequencies of the fast subsystems for
the two units differed twofold.

Synchronous burst responses of a population of sensory
neurons may be a neural mechanism for coincidence detec-
tion, and may substantially simplify the neural operations
that a fish’s brain must perform to detect prey and to cal-
culate their position and velocity. Thus, the rostrum of the
paddlefish, with its thousands of electroreceptors, can be
considered as a preprocessor of input information, akin to
the retina or olfactory bulb. The impulselike electrical sig-
nal emitted by an individual planktonic prey (e.g., Daph-
nia) moving along the rostrum [25], or the exponentially
correlated Gaussian electrical noise generated by swarms
of Daphnia [26], may be adequate stimuli for evoking
synchronized bursting of different electroreceptors during
feeding behavior. Further experimental study is needed to
verify this hypothesis.
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